Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 25: e45069, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37552535

ABSTRACT

BACKGROUND: Developing an understanding of the public discourse on COVID-19 vaccination on social media is important not only for addressing the ongoing COVID-19 pandemic but also for future pathogen outbreaks. There are various research efforts in this domain, although, a need still exists for a comprehensive topic-wise analysis of tweets in favor of and against COVID-19 vaccines. OBJECTIVE: This study characterizes the discussion points in favor of and against COVID-19 vaccines posted on Twitter during the first year of the pandemic. The aim of this study was primarily to contrast the views expressed by both camps, their respective activity patterns, and their correlation with vaccine-related events. A further aim was to gauge the genuineness of the concerns expressed in antivax tweets. METHODS: We examined a Twitter data set containing 75 million English tweets discussing the COVID-19 vaccination from March 2020 to March 2021. We trained a stance detection algorithm using natural language processing techniques to classify tweets as antivax or provax and examined the main topics of discourse using topic modeling techniques. RESULTS: Provax tweets (37 million) far outnumbered antivax tweets (10 million) and focused mostly on vaccine development, whereas antivax tweets covered a wide range of topics, including opposition to vaccine mandate and concerns about safety. Although some antivax tweets included genuine concerns, there was a large amount of falsehood. Both stances discussed many of the same topics from opposite viewpoints. Memes and jokes were among the most retweeted messages. Most tweets from both stances (9,007,481/10,566,679, 85.24% antivax and 24,463,708/37,044,507, 66.03% provax tweets) came from dual-stance users who posted both provax and antivax tweets during the observation period. CONCLUSIONS: This study is a comprehensive account of COVID-19 vaccine discourse in the English language on Twitter from March 2020 to March 2021. The broad range of discussion points covered almost the entire conversation, and their temporal dynamics revealed a significant correlation with COVID-19 vaccine-related events. We did not find any evidence of polarization and prevalence of antivax discourse over Twitter. However, targeted countering of falsehoods is important because only a small fraction of antivax discourse touched on a genuine issue. Future research should examine the role of memes and humor in driving web-based social media activity.


Subject(s)
COVID-19 , Social Media , Vaccines , Humans , Communication , COVID-19/prevention & control , COVID-19/epidemiology , COVID-19 Vaccines , Pandemics
2.
PNAS Nexus ; 1(5): pgac229, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36712374

ABSTRACT

Dynamic norms have recently emerged as a powerful method to encourage individuals to adopt an innovation by highlighting a growing trend in its uptake. However, there have been no concrete attempts to understand how this individual-level mechanism might shape the collective population behavior. Here, we develop a framework to examine this by encapsulating dynamic norms within a game-theoretic mathematical model for innovation diffusion. Specifically, we extend a network coordination game by incorporating a probabilistic mechanism where an individual adopts the action with growing popularity, instead of the standard best-response update rule; the probability of such an event captures the population's "sensitivity" to dynamic norms. Theoretical analysis reveals that sensitivity to dynamic norms is key to facilitating social diffusion. Small increases in sensitivity reduces the advantage of the innovation over status quo or the number of initial innovators required to unlock diffusion, while a sufficiently large sensitivity alone guarantees diffusion.

3.
Phys Rev E ; 104(2-1): 024314, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34525543

ABSTRACT

The spreading dynamics of an epidemic and the collective behavioral pattern of the population over which it spreads are deeply intertwined and the latter can critically shape the outcome of the former. Motivated by this, we design a parsimonious game-theoretic behavioral-epidemic model, in which an interplay of realistic factors shapes the coevolution of individual decision making and epidemics on a network. Although such a coevolution is deeply intertwined in the real world, existing models schematize population behavior as instantaneously reactive, thus being unable to capture human behavior in the long term. Our paradigm offers a unified framework to model and predict complex emergent phenomena, including successful collective responses, periodic oscillations, and resurgent epidemic outbreaks. The framework also allows us to provide analytical insights on the epidemic process and to assess the effectiveness of different policy interventions on ensuring a collective response that successfully eradicates the outbreak. Two case studies, inspired by real-world diseases, are presented to illustrate the potentialities of the proposed model.

4.
Nat Commun ; 12(1): 5698, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588442

ABSTRACT

Social conventions change when individuals collectively adopt an alternative over the status quo, in a process known as social diffusion. Our repeated trials of a multi-round experiment provided data that helped motivate the proposal of an agent-based model of social diffusion that incorporates inertia and trend-seeking, two behavioural mechanisms that are well documented in the social psychology literature. The former causes people to stick with their current decision, the latter creates sensitivity to population-level changes. We show that such inclusion resolves the contradictions of existing models, allowing to reproduce patterns of social diffusion which are consistent with our data and existing empirical observations at both the individual and population level. The model reveals how the emergent population-level diffusion pattern is critically shaped by the two individual-level mechanisms; trend-seeking guarantees the diffusion is explosive after the diffusion process takes off, but inertia can greatly delay the time to take-off.


Subject(s)
Models, Psychological , Social Behavior , Adolescent , Adult , Aged , Decision Making , Female , Games, Experimental , Humans , Male , Middle Aged , Social Change , Young Adult
5.
Chaos ; 30(8): 083107, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872837

ABSTRACT

Motivated by the literature on opinion dynamics and evolutionary game theory, we propose a novel mathematical framework to model the intertwined coevolution of opinions and decision-making in a complex social system. In the proposed framework, the members of a social community update their opinions and revise their actions as they learn of others' opinions shared on a communication channel and observe others' actions through an influence channel; these interactions determine a two-layer network structure. We offer an application of the proposed framework by tailoring it to study the adoption of a novel social norm, demonstrating that the model is able to capture the emergence of several real-world collective phenomena such as paradigm shifts and unpopular norms. Through the establishment of analytical conditions and Monte Carlo numerical simulations, we shed light on the role of the coupling between opinion dynamics and decision-making, and of the network structure, in shaping the emergence of complex collective behavior in social systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...