Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Sci Adv ; 6(21): eaaz4193, 2020 05.
Article in English | MEDLINE | ID: mdl-32671207

ABSTRACT

The ability to modulate neural activity in specific brain circuits remotely and systematically could revolutionize studies of brain function and treatments of brain disorders. Sound waves of high frequencies (ultrasound) have shown promise in this respect, combining the ability to modulate neuronal activity with sharp spatial focus. Here, we show that the approach can have potent effects on choice behavior. Brief, low-intensity ultrasound pulses delivered noninvasively into specific brain regions of macaque monkeys influenced their decisions regarding which target to choose. The effects were substantial, leading to around a 2:1 bias in choices compared to the default balanced proportion. The effect presence and polarity was controlled by the specific target region. These results represent a critical step towards the ability to influence choice behavior noninvasively, enabling systematic investigations and treatments of brain circuits underlying disorders of choice.

3.
J Neurosci ; 39(32): 6251-6264, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31196935

ABSTRACT

Focused ultrasound has been shown to be effective at stimulating neurons in many animal models, both in vivo and ex vivo Ultrasonic neuromodulation is the only noninvasive method of stimulation that could reach deep in the brain with high spatial-temporal resolution, and thus has potential for use in clinical applications and basic studies of the nervous system. Understanding the physical mechanism by which energy in a high acoustic frequency wave is delivered to stimulate neurons will be important to optimize this technology. We imaged the isolated salamander retina of either sex during ultrasonic stimuli that drive ganglion cell activity and observed micron scale displacements, consistent with radiation force, the nonlinear delivery of momentum by a propagating wave. We recorded ganglion cell spiking activity and changed the acoustic carrier frequency across a broad range (0.5-43 MHz), finding that increased stimulation occurs at higher acoustic frequencies, ruling out cavitation as an alternative possible mechanism. A quantitative radiation force model can explain retinal responses and could potentially explain previous in vivo results in the mouse, suggesting a new hypothesis to be tested in vivo Finally, we found that neural activity was strongly modulated by the distance between the transducer and the electrode array showing the influence of standing waves on the response. We conclude that radiation force is the dominant physical mechanism underlying ultrasonic neurostimulation in the ex vivo retina and propose that the control of standing waves is a new potential method to modulate these effects.SIGNIFICANCE STATEMENT Ultrasonic neurostimulation is a promising noninvasive technology that has potential for both basic research and clinical applications. The mechanisms of ultrasonic neurostimulation are unknown, making it difficult to optimize in any given application. We studied the physical mechanism by which ultrasound is converted into an effective energy form to cause neurostimulation in the retina and find that ultrasound acts via radiation force leading to a mechanical displacement of tissue. We further show that standing waves have a strong modulatory effect on activity. Our quantitative model by which ultrasound generates radiation force and leads to neural activity will be important in optimizing ultrasonic neurostimulation across a wide range of applications.


Subject(s)
Retina/radiation effects , Ultrasonic Waves , Acoustics , Action Potentials/radiation effects , Ambystoma , Animals , Female , Fluorescent Dyes/radiation effects , Male , Mice , Microscopy, Confocal , Models, Neurological , Organ Culture Techniques , Phosphenes/physiology , Pyridinium Compounds/radiation effects , Quaternary Ammonium Compounds/radiation effects , Retinal Ganglion Cells/physiology , Retinal Ganglion Cells/radiation effects , Temperature
4.
Brain Stimul ; 12(4): 901-910, 2019.
Article in English | MEDLINE | ID: mdl-30880027

ABSTRACT

BACKGROUND: Recent studies in a variety of animal models including rodents, monkeys, and humans suggest that transcranial focused ultrasound (tFUS) has considerable promise for non-invasively modulating neural activity with the ability to target deep brain structures. However, concerns have been raised that motor responses evoked by tFUS may be due to indirect activation of the auditory pathway rather than direct activation of motor circuits. OBJECTIVE: In this study, we sought to examine the involvement of peripheral auditory system activation from tFUS stimulation applied to elicit motor responses. The purpose was to determine to what extent ultrasound induced auditory artifact could be a factor in ultrasound motor neuromodulation. METHODS: In this study, tFUS-induced electromyography (EMG) signals were recorded and analyzed in wild-type (WT) normal hearing mice and two strains of genetically deaf mice to examine the involvement of the peripheral auditory system in tFUS-stimulated motor responses. In addition, auditory brainstem responses (ABRs) were measured to elucidate the effect of the tFUS stimulus envelope on auditory and motor responses. We also varied the tFUS stimulation duration to measure its effect on motor response duration. RESULTS: We show, first, that the sharp edges in a tFUS rectangular envelope stimulus activate the peripheral afferent auditory pathway and, second, that smoothing these edges eliminates the auditory responses without affecting the motor responses in normal hearing WT mice. We further show that by eliminating peripheral auditory activity using two different strains of deaf knockout mice, motor responses are the same as in normal hearing WT mice. Finally, we demonstrate a high correlation between tFUS pulse duration and EMG response duration. CONCLUSION: These results support the concept that tFUS-evoked motor responses are not a result of stimulation of the peripheral auditory system.


Subject(s)
Acoustic Stimulation/methods , Auditory Pathways/physiology , Brain/physiology , Motor Activity/physiology , Ultrasonic Waves , Animals , Brain Mapping/methods , Electromyography/methods , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
5.
Sci Rep ; 8(1): 3392, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467432

ABSTRACT

In magnetic resonance guided focused ultrasound (MRgFUS) therapy sound waves are focused through the body to selectively ablate difficult to access lesions and tissues. A magnetic resonance imaging (MRI) scanner non-invasively tracks the temperature increase throughout the tissue to guide the therapy. In clinical MRI, tightly fitted hardware comprised of multichannel coil arrays are required to capture high quality images at high spatiotemporal resolution. Ablating tissue requires a clear path for acoustic energy to travel but current array materials scatter and attenuate acoustic energy. As a result coil arrays are placed outside of the transducer, clear of the beam path, compromising imaging speed, resolution, and temperature accuracy of the scan. Here we show that when coil arrays are fabricated by additive manufacturing (i.e., printing), they exhibit acoustic transparency as high as 89.5%. This allows the coils to be placed in the beam path increasing the image signal to noise ratio (SNR) five-fold in phantoms and volunteers. We also characterize printed coil materials properties over time when submerged in the water required for acoustic coupling. These arrays offer high SNR and acceleration capabilities, which can address current challenges in treating head and abdominal tumors allowing MRgFUS to give patients better outcomes.


Subject(s)
Acoustics/instrumentation , Equipment Design/instrumentation , Magnetic Resonance Imaging/instrumentation , Animals , Brain/diagnostic imaging , Cattle , Head/diagnostic imaging , Humans , Phantoms, Imaging , Signal-To-Noise Ratio , Transducers
6.
J Health Care Poor Underserved ; 28(4): 1276-1285, 2017.
Article in English | MEDLINE | ID: mdl-29176094

ABSTRACT

This report describes the model of specialty clinics implemented at Stanford University's two student-run free clinics, Arbor Free Clinic and Pacific Free Clinic, in the San Francisco Bay Area. We describe our patient demographic characteristics and the specialty services provided. We discuss challenges in implementing specialty care at student-run free clinics.


Subject(s)
Medically Underserved Area , Poverty , Specialization , Student Run Clinic/organization & administration , Adult , Aged , Female , Humans , Male , Middle Aged , San Francisco , Young Adult
7.
J Neurotrauma ; 34(22): 3198-3205, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28683585

ABSTRACT

With 300,000,000 riders annually, roller coasters are a popular recreational activity. Although the number of roller coaster injuries is relatively low, the precise effect of roller coaster rides on our brains remains unknown. Here we present the quantitative characterization of brain displacements and deformations during roller coaster rides. For two healthy adult male subjects, we recorded head accelerations during three representative rides, and, for comparison, during running and soccer headers. From the recordings, we simulated brain displacements and deformations using rigid body dynamics and finite element analyses. Our findings show that despite having lower linear accelerations than sports head impacts, roller coasters may lead to brain displacements and strains comparable to mild soccer headers. The peak change in angular velocity on the rides was 9.9 rad/sec, which was higher than the 5.6 rad/sec in soccer headers with ball velocities reaching 7 m/sec. Maximum brain surface displacements of 4.0 mm and maximum principal strains of 7.6% were higher than in running and similar to soccer headers, but below the reported average concussion strain. Brain strain rates during roller coaster rides were similar to those in running, and lower than those in soccer headers. Strikingly, on the same ride and at a similar position, the two subjects experienced significantly different head kinematics and brain deformation. These results indicate that head motion and brain deformation during roller coaster rides are highly sensitive to individual subjects. Although our study suggests that roller coaster rides do not present an immediate risk of acute brain injury, their long-term effects require further longitudinal study.


Subject(s)
Acceleration/adverse effects , Biomechanical Phenomena/physiology , Brain Injuries/etiology , Brain Injuries/physiopathology , Models, Neurological , Adult , Healthy Volunteers , Humans , Male , Pilot Projects , Running , Soccer
8.
Ultrasound Med Biol ; 42(7): 1512-30, 2016 07.
Article in English | MEDLINE | ID: mdl-27090861

ABSTRACT

Ultrasound neuromodulation holds promise as a non-invasive technique for neuromodulation of the central nervous system. However, much remains to be determined about how the technique can be transformed into a useful technology, including the effect of ultrasound frequency. Previous studies have demonstrated neuromodulation in vivo using frequencies <1 MHz, with a trend toward improved efficacy with lower frequency. However, using higher frequencies could offer improved ultrasound spatial resolution. We investigate the ultrasound neuromodulation effects in mice at various frequencies both below and above 1 MHz. We find that frequencies up to 2.9 MHz can still be effective for generating motor responses, but we also confirm that as frequency increases, sonications require significantly more intensity to achieve equivalent efficacy. We argue that our results provide evidence that favors either a particle displacement or a cavitation-based mechanism for the phenomenon of ultrasound neuromodulation.


Subject(s)
Brain/physiology , Physical Stimulation/methods , Ultrasonic Waves , Animals , Mice , Models, Animal
9.
Sci Transl Med ; 4(125): 125ra31, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22422992

ABSTRACT

Adverse drug events remain a leading cause of morbidity and mortality around the world. Many adverse events are not detected during clinical trials before a drug receives approval for use in the clinic. Fortunately, as part of postmarketing surveillance, regulatory agencies and other institutions maintain large collections of adverse event reports, and these databases present an opportunity to study drug effects from patient population data. However, confounding factors such as concomitant medications, patient demographics, patient medical histories, and reasons for prescribing a drug often are uncharacterized in spontaneous reporting systems, and these omissions can limit the use of quantitative signal detection methods used in the analysis of such data. Here, we present an adaptive data-driven approach for correcting these factors in cases for which the covariates are unknown or unmeasured and combine this approach with existing methods to improve analyses of drug effects using three test data sets. We also present a comprehensive database of drug effects (Offsides) and a database of drug-drug interaction side effects (Twosides). To demonstrate the biological use of these new resources, we used them to identify drug targets, predict drug indications, and discover drug class interactions. We then corroborated 47 (P < 0.0001) of the drug class interactions using an independent analysis of electronic medical records. Our analysis suggests that combined treatment with selective serotonin reuptake inhibitors and thiazides is associated with significantly increased incidence of prolonged QT intervals. We conclude that confounding effects from covariates in observational clinical data can be controlled in data analyses and thus improve the detection and prediction of adverse drug effects and interactions.


Subject(s)
Adverse Drug Reaction Reporting Systems , Drug Interactions , Drug-Related Side Effects and Adverse Reactions , Product Surveillance, Postmarketing/methods
10.
J Immunol ; 181(1): 22-6, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18566366

ABSTRACT

Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.


Subject(s)
Serum Amyloid A Protein/metabolism , Toll-Like Receptor 2/metabolism , Animals , Cell Line , Cricetinae , Cytokines/biosynthesis , Cytokines/genetics , Humans , Mice , Protein Binding , Signal Transduction , Toll-Like Receptor 2/deficiency , Toll-Like Receptor 2/genetics
11.
Mol Pharmacol ; 72(4): 976-83, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17652444

ABSTRACT

A series of quinazolinone derivatives were synthesized based on a hit compound identified from a high-throughput screening campaign targeting the human formyl peptide receptor-like 1 (FPRL1). Based on structure-activity relationship analysis, we found that substitution on the para position of the 2-phenyl group of the quinazolinone backbone could alter the pharmacological properties of the compound. The methoxyl substitution produced an agonist 4-butoxy-N-[2-(4-methoxy-phenyl)-4-oxo-1,4-dihydro-2H-quinazolin-3-yl]-benzamide (Quin-C1; C1), whereas a hydroxyl substitution resulted in a pure antagonist, Quin-C7 (C7). Several partial agonists were derived from other substitutions on the para position. C7 partially displaced [(125)I]Trp-Lys-Tyr-Met-Val-d-Met-NH(2) (WKYMVm) binding to FPRL1 but not [(3)H]N-formyl-Met-Leu-Phe to formyl peptide receptor. In functional assays using FPRL1-expressing RBL-2H3 cells, C7 inhibited calcium mobilization and chemotaxis induced by WKYMVm and C1 and degranulation elicited by C1. C7 also suppressed C1-induced extracellular signal-regulated kinase phosphorylation and reduced arachidonic acid-induced ear edema in mice. This study represents the first characterization of a nonpeptidic antagonist for FPRL1 and suggests the prospect of using low molecular weight compounds as modulators of chemoattractant receptors in vitro and in vivo.


Subject(s)
Chemotactic Factors/pharmacology , Oligopeptides/pharmacology , Receptors, Formyl Peptide/antagonists & inhibitors , Arachidonic Acid/pharmacology , Calcium/metabolism , Cell Line , Chemotaxis/drug effects , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Humans , Ligands , Phosphorylation , Receptors, Formyl Peptide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...