Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 433
Filter
1.
Plant Sci ; 346: 112139, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838990

ABSTRACT

Dipterocarp species dominate tropical forest ecosystems and provide key ecological and economic value through their use of aromatic resins, medicinal chemicals, and high-quality timber. However, habitat loss and unsustainable logging have endangered many Dipterocarpaceae species. Genomic strategies provide new opportunities for both elucidating the molecular pathways underlying these desirable traits and informing conservation efforts for at-risk taxa. This review summarizes the progress in dipterocarp genomics analysis and applications. We describe 16 recently published Dipterocarpaceae genome sequences, representing crucial genetic blueprints. Phylogenetic comparisons delineate evolutionary relationships among species and provide frameworks for pinpointing functional changes underlying specialized metabolism and wood development patterns. We also discuss connections revealed thus far between specific gene families and both oleoresin biosynthesis and wood quality traits-including the identification of key terpenoid synthases and cellulose synthases likely governing pathway flux. Moreover, the characterization of adaptive genomic markers offers vital resources for supporting conservation practices prioritizing resilient genotypes displaying valuable oleoresin and timber traits. Overall, progress in dipterocarp functional and comparative genomics provides key tools for addressing the intertwined challenges of preserving biodiversity in endangered tropical forest ecosystems while sustainably deriving aromatic chemicals and quality lumber that support diverse human activities.

2.
J Orthop Surg Res ; 19(1): 339, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849964

ABSTRACT

BACKGROUND: Continuous peripheral nerve blocks are widely used for anesthesia and postoperative analgesia in lower limb surgeries. The authors aimed to develop a novel continuous sacral plexus block procedure for analgesia during total knee arthroplasty. METHODS: The study comprised two stages. In Stage I, the authors built upon previous theories and technological innovations to develop a novel continuous sacral plexus block method, ultrasound-guided continuous parasacral ischial plane block (UGCPIPB) and subsequently conducted a proof-of-concept study to assess its effectiveness and feasibility. Stage II involved a historical control study to compare clinical outcomes between patients undergoing this new procedure and those receiving the conventional procedure. RESULTS: The study observed a 90% success rate in catheter placement. On postoperative day (POD) 1, POD2, and POD3, the median visual analog scale (VAS) scores were 3 (range, 1.5-3.5), 2.5 (1.6-3.2), and 2.7 (1.3-3.4), respectively. Furthermore, 96.3% of the catheters remained in place until POD3, as confirmed by ultrasound. The study revealed a significant increase in skin temperature and peak systolic velocity of the anterior tibial artery on the blocked side compared with those on the non-blocked side. Complications included catheter clogging in one patient and leakage at the insertion site in two patients. In Stage II, the novel technique was found to be more successful than conventional techniques, with a lower catheter displacement rate than the conventional procedure for continuous sciatic nerve block. CONCLUSION: UGCPIPB proved to be an effective procedure and safe for analgesia in total knee arthroplasty. CHINESE CLINICAL TRIAL REGISTRY NUMBER: ChiCTR2300068902.


Subject(s)
Arthroplasty, Replacement, Knee , Nerve Block , Pain, Postoperative , Proof of Concept Study , Ultrasonography, Interventional , Humans , Pain, Postoperative/prevention & control , Pain, Postoperative/etiology , Arthroplasty, Replacement, Knee/methods , Nerve Block/methods , Male , Female , Aged , Ultrasonography, Interventional/methods , Middle Aged , Lumbosacral Plexus/diagnostic imaging , Feasibility Studies , Pain Management/methods , Aged, 80 and over , Ischium/diagnostic imaging , Pain Measurement
3.
Front Microbiol ; 15: 1413434, 2024.
Article in English | MEDLINE | ID: mdl-38903781

ABSTRACT

Objective: Pseudomonas aeruginosa has strong drug resistance and can tolerate a variety of antibiotics, which is a major problem in the management of antibiotic-resistant infections. Direct prediction of multi-drug resistance (MDR) resistance phenotypes of P. aeruginosa isolates and clinical samples by genotype is helpful for timely antibiotic treatment. Methods: In the study, whole genome sequencing (WGS) data of 494 P. aeruginosa isolates were used to screen key anti-microbial resistance (AMR)-associated genes related to imipenem (IPM), meropenem (MEM), piperacillin/tazobactam (TZP), and levofloxacin (LVFX) resistance in P. aeruginosa by comparing genes with copy number differences between resistance and sensitive strains. Subsequently, for the direct prediction of the resistance of P. aeruginosa to four antibiotics by the AMR-associated features screened, we collected 74 P. aeruginosa positive sputum samples to sequence by metagenomics next-generation sequencing (mNGS), of which 1 sample with low quality was eliminated. Then, we constructed the resistance prediction model. Results: We identified 93, 88, 80, 140 AMR-associated features for IPM, MEM, TZP, and LVFX resistance in P. aeruginosa. The relative abundance of AMR-associated genes was obtained by matching mNGS and WGS data. The top 20 features with importance degree for IPM, MEM, TZP, and LVFX resistance were used to model, respectively. Then, we used the random forest algorithm to construct resistance prediction models of P. aeruginosa, in which the areas under the curves of the IPM, MEM, TZP, and LVFX resistance prediction models were all greater than 0.8, suggesting these resistance prediction models had good performance. Conclusion: In summary, mNGS can predict the resistance of P. aeruginosa by directly detecting AMR-associated genes, which provides a reference for rapid clinical detection of drug resistance of pathogenic bacteria.

4.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1123-1130, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884247

ABSTRACT

China has complex natural conditions and is rich in biodiversity. Based on the geographical distribution and species composition of terrestrial mammals, we explored the characteristics and geographic partitioning of mammal populations in different regions of China. We used a clustering algorithm, combined with the spatial distribution data and taxonomic characteristics of mammals, to geographically partition the terrestrial mammals in China. We found 10 zoogeographic regions of terrestrial mammals in China: Northeast region, North China region, Eastern grassland region, Western region, Northwest region, Qiangtang plateau region, Eastern Qinghai-Tibet Plateau region, Himalayan region, South China region, and Taiwan-Hainan region. We found a new geographical zoning pattern for terrestrial mammals in China, examined the variability and characteristics of species composition among different regions, and quantified the association between species distribution and environmental factors. We proposed a method of incorporating taxonomic information into cluster analysis, which provided a new idea for zoogeographic region studies, a new perspective for understanding species diversity, and a scientific basis for animal conservation and habitat planning.


Subject(s)
Biodiversity , Ecosystem , Mammals , China , Animals , Mammals/classification , Geography , Cluster Analysis , Conservation of Natural Resources
5.
Int J Biol Macromol ; 270(Pt 1): 132310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740162

ABSTRACT

With multiscale hierarchical structure, wood is suitable for a range of high-value applications, especially as a chromatographic matrix. Here, we have aimed to provide a weak anion-exchange polymeric monolithic column based on natural wood with high permeability and stability for effectively separating the targeted protein. The wood-polymeric monolithic column was synthesized by in situ polymerization of glycidyl methacrylate and ethylene glycol dimethacrylate in wood, and coupled with diethylaminoethyl hydrochloride. The wood-polymeric monolithic column can be integrated with fast-protein liquid chromatography for large-scale protein purification. According to the results, the wood-polymeric monolithic column showed high hydrophilicity, permeability and stability. Separation experiments verified that the wood-polymeric monolithic column could purify the targeted protein (spike protein of SARS-COV-2 and ovalbumin) from the mixed proteins by ion exchange, and the static adsorption capacity was 33.04 mg mL-1 and the dynamic adsorption capacity was 24.51 mg mL-1. In addition, the wood-polymerized monolithic column had good stability, and a negligible decrease in the dynamic adsorption capacity after 20 cycles. This wood-polymerized monolithic column can provide a novel, efficient, and green matrix for monolithic chromatographic columns.


Subject(s)
Wood , Wood/chemistry , Adsorption , Methacrylates/chemistry , Chromatography, Ion Exchange/methods , Polymers/chemistry , Ovalbumin/chemistry , Ovalbumin/isolation & purification , Hydrophobic and Hydrophilic Interactions , SARS-CoV-2 , Polymerization , Epoxy Compounds
6.
Eur Radiol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38710788

ABSTRACT

OBJECTIVE: To compare the outcomes of totally percutaneous in situ microneedle puncture for left subclavian artery (LSA) fenestration (ISMF) and chimney technique in type B aortic dissection (TBAD) during thoracic endovascular aortic repair (TEVAR). MATERIALS AND METHODS: Data on patients who underwent either chimney-TEVAR (n = 89) or ISMF-TEVAR (n = 113) from October 2018 to April 2022 were analyzed retrospectively. The primary outcomes were mortality and major complications at 30 days and during follow-up. RESULTS: The technical success rate was 84.3% in the chimney group and 93.8% in the ISMF group (p = 0.027). The incidence of immediate endoleakage was significantly higher in the chimney than ISMF group (15.7% vs 6.2%, respectively; p = 0.027). The 1- and 3-year survival rates in the chimney and ISMF groups were 98.9% ± 1.1% vs 98.1% ± 0.9% and 86.5% ± 6.3% vs 92.6% ± 4.1%, respectively (log-rank p = 0.715). The 3-year rate of cumulative freedom from branch occlusion in the chimney and ISMF group was 95.4% ± 2.3% vs 100%, respectively (log-rank p = 0.023). CONCLUSION: Both ISMF-TEVAR and chimney-TEVAR achieved satisfactory short- and mid-term outcomes for the preservation of the LSA in patients with TBAD. ISMF-TEVAR appears to offer better clinical outcomes with higher patency and lower reintervention rates. However, ISMF-TEVAR had longer operation times with higher procedure expenses. CLINICAL RELEVANCE STATEMENT: When LSA revascularization is required during TEVAR, in situ, fenestration, and chimney techniques are all safe and effective methods; in situ, fenestration-TEVAR appears to offer better clinical outcomes, but takes longer and is more complicated. KEY POINTS: LSA revascularization during TEVAR reduces post-operative complication rates. Both in situ ISMF-TEVAR and chimney-TEVAR are safe and effective techniques for the preservation of the LSA during TEVAR. The chimney technique is associated with a higher incidence of endoleakage and branch occlusion, but ISMF-TEVAR is a more complicated and expensive technique.

7.
Sci Rep ; 14(1): 7925, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575650

ABSTRACT

Typhoon disasters undergo a complex evolutionary process influenced by temporal changes, and investigating this process constitutes the central focus of geographical research. As a key node within the typhoon disaster process, the state serves as the foundation for gauging the dynamics of the disaster. The majority of current approaches to disaster information extraction rely on event extraction methods to acquire fundamental elements, including disaster-causing factors, disaster-bearing bodies, disaster-pregnant environment and the extent of damage. Due to the dispersion of various disaster information and the diversity of time and space, it is a challenge for supporting the analysis of the typhoon disaster process. In this paper, a typhoon disaster state information extraction (TDSIE) method for Chinese texts is proposed, which aims to facilitate the systematic integration of fragmented typhoon disaster information. First, the integration of part-of-speech tagging with spatio-temporal information extraction is employed to achieve the tagging of typhoon disaster texts. Second, within the framework of spatio-temporal semantic units, the typhoon disaster semantic vector is constructed to facilitate the identification of information elements of typhoon disaster states. Third, co-referential state information fusion is performed based on spatio-temporal cues. Experimental analysis, conducted using online news as the data source, reveals that the TDSIE achieves precision and recall rates consistently surpassing 85%. The typhoon disaster state information derived from the TDSIE allows for the analysis of spatio-temporal patterns, evolutionary characteristics, and activity modes of typhoon disasters across various scales. Therefore, TDSIE serves as valuable support for investigating the inherent process properties of typhoon disasters.

8.
Br J Pharmacol ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644540

ABSTRACT

BACKGROUND AND PURPOSE: White adipose tissue (WAT) is involved in rheumatoid arthritis (RA). This study explored its potential as an antirheumatic target. EXPERIMENTAL APPROACH: WAT status of healthy and adjuvant-induced arthritis (AIA) rats were compared. The contribution of WAT to RA pathology was evaluated by pre-adipocyte transplant experiments and by dissecting perirenal fat pads of AIA rats. The impact of RA on WAT was investigated by culturing pre-adipocytes. Proteins differentially expressed in WAT of healthy and AIA rats were identified by the UPLC/MS2 method. These together with PPARγ siRNA and agonist were used to treat pre-adipocytes in vitro. The medium was used for THP-1 monocyte culture. KEY RESULTS: Compared with healthy controls, AIA WAT was smaller but secreted more leptin, eNAMPT, MCP-1, TNF-α, and IL-6. AIA rat pre-adipocytes increased the levels of these adipokines in healthy recipients. RA patients' serum induced a similar secretion change and impaired differentiation of pre-adipocytes. Adipectomy eased AIA-related immune abnormalities and arthritic manifestations. Hepatokines PON1, IGFBP4, and GPIHBP1 were among the differential proteins in high levels in RA blood, and induced inflammatory secretions by pre-adipocytes. GPIHBP1 inhibited PPARγ expression and caused differentiation impairment and inflammatory secretion by pre-adipocytes, a similar outcome to PPARγ-silencing. This endowed the cells with an ability to activate monocytes, which can be abrogated by rosiglitazone. CONCLUSION AND IMPLICATIONS: Certain hepatokines potentiate inflammatory secretions by pre-adipocytes and expedite RA progression by inhibiting PPARγ. Targeting this signalling or abnormal WAT secretion by various approaches may reduce RA severity.

9.
Planta ; 259(6): 138, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687380

ABSTRACT

MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.


Subject(s)
Acrolein , Acrolein/analogs & derivatives , Aldehyde Oxidoreductases , Cinnamomum aromaticum , Acrolein/metabolism , Cinnamomum aromaticum/genetics , Cinnamomum aromaticum/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Molecular Docking Simulation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Bark/genetics , Plant Bark/metabolism , Gene Expression Regulation, Plant
12.
Phytomedicine ; 127: 155487, 2024 May.
Article in English | MEDLINE | ID: mdl-38490078

ABSTRACT

AIM: To extend and form the "Grading of Recommendations Assessment, Development and Evaluation in Traditional Chinese Medicine" (GRADE-TCM). METHODS: Methodologies were systematically reviewed and analyzed concerning evidence-based TCM guidelines worldwide. A survey questionnaire was developed based on the literature review and open-end expert interviews. Then, we performed expert consensus, discussion meeting, opinion collection, external examination, and the GRADE-TCM was formed eventually. RESULTS: 265 Chinese and English TCM guidelines were included and analyzed. Five experts completed the open-end interviews. Ten methodological entries were summarized, screened and selected. One round of consensus was conducted, including a total of 22 experts and 220 valid questionnaire entries, concerning 1) selection of the GRADE, 2) GRADE-TCM upgrading criteria, 3) GRADE-TCM evaluation standard, 4) principles of consensus and recommendation, and 5) presentation of the GRADE-TCM and recommendation. Finally, consensus was reached on the above 10 entries, and the results were of high importance (with voting percentages ranging from 50 % to 81.82 % for "very important" rating) and strong reliability (with the Cr ranging from 0.93 to 0.99). Expert discussion meeting (with 40 experts), opinion collection (in two online platforms) and external examination (with 14 third-party experts) were conducted, and the GRADE-TCM was established eventually. CONCLUSION: GRADE-TCM provides a new extended evidence-based evaluation standard for TCM guidelines. In GRADE-TCM, international evidence-based norms, characteristics of TCM intervention, and inheritance of TCM culture were combined organically and followed. This is helpful for localization of the GRADE in TCM and internationalization of TCM guidelines.


Subject(s)
Evidence-Based Medicine , Medicine, Chinese Traditional , Medicine, Chinese Traditional/methods , Reproducibility of Results , Surveys and Questionnaires
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 193-198, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38512028

ABSTRACT

Objective To investigate the regulation of IL-1ß on the expression of CD200 in human umbilical cord mesenchymal stem cells (hUC-MSCs), its role in macrophage polarization and the underlying mechanism. Methods hUC-MSCs were isolated and cultured in serum-free medium. Morphological observation and the expressions of CD73, CD90, CD105, CD14, CD34, CD45 and HLA-DR were detected by flow cytometry to confirm the properties of mesenchymal stem cells. hUC-MSCs were treated with IL-1ß at the final concentration of 20 ng/mL for 24 hours. The proportion of CD200 positive cells was measured by flow cytometry. Real-time quantitative PCR and Western blot analysis were used to detect CD200 mRNA and protein expression levels. hUC-MSCs infected with CD200 overexpression (OE-CD200) and its negative control (OE-NC) lectin virus were treated with IL-1ß and co-cultured with PMA-activated THP-1 macrophages. The proportion of CD11c and CD206 positive cells was measured by flow cytometry. hUC-MSCs were treated with IL-1ß in combination with PD98059, and the expression of MAPK signaling pathway-related proteins and its effect on CD200 expression were detected by Western blot analysis. Results IL-1ß significantly down-regulated the expression of CD200 protein and the proportion of CD200 positive cells. Overexpression of CD200 significantly up-regulated the expression of CD200 in hUC-MSCs, and increased the proportion of CD206-positive macrophages. IL-1ß activated the ERK1/2 signaling pathway in hUC-MSCs, and PD98059 up-regulated the expression of CD200 protein in hUC-MSCs treated with IL-1ß. Conclusion IL-1ß inhibits the expression of CD200 by activating ERK1/2 signaling pathway, and reduces the immunosuppressive effect of hUC-MSCs on regulating the M2-type polarization of macrophages.


Subject(s)
Umbilical Cord , Humans , Antigens, CD34 , Blotting, Western , Coculture Techniques , Flow Cytometry , Interleukin-1beta/pharmacology
14.
Acta Pharmacol Sin ; 45(6): 1201-1213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491160

ABSTRACT

The angiotensin II type 2 receptor (AT2R) is a well-established component of the renin-angiotensin system and is known to counteract classical activation of this system and protect against organ damage. Pharmacological activation of the AT2R has significant therapeutic benefits, including vasodilation, natriuresis, anti-inflammatory activity, and improved insulin sensitivity. However, the precise biological functions of the AT2R in maintaining homeostasis in liver tissue remain largely unexplored. In this study, we found that the AT2R facilitates liver repair and regeneration following acute injury by deactivating Hippo signaling and that interleukin-6 transcriptionally upregulates expression of the AT2R in hepatocytes through STAT3 acting as a transcription activator binding to promoter regions of the AT2R. Subsequently, elevated AT2R levels activate downstream signaling via heterotrimeric G protein Gα12/13-coupled signals to induce Yap activity, thereby contributing to repair and regeneration processes in the liver. Conversely, a deficiency in the AT2R attenuates regeneration of the liver while increasing susceptibility to acetaminophen-induced liver injury. Administration of an AT2R agonist significantly enhances the repair and regeneration capacity of injured liver tissue. Our findings suggest that the AT2R acts as an upstream regulator in the Hippo pathway and is a potential target in the treatment of liver damage.


Subject(s)
Hippo Signaling Pathway , Interleukin-6 , Liver Regeneration , Mice, Inbred C57BL , Protein Serine-Threonine Kinases , Receptor, Angiotensin, Type 2 , Signal Transduction , Animals , Male , Mice , Acetaminophen , Adaptor Proteins, Signal Transducing/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Hepatocytes/drug effects , Interleukin-6/metabolism , Liver/metabolism , Liver/drug effects , Liver Regeneration/drug effects , Liver Regeneration/physiology , Mice, Knockout , Protein Serine-Threonine Kinases/metabolism , Receptor, Angiotensin, Type 2/metabolism , Signal Transduction/drug effects , STAT3 Transcription Factor/metabolism , YAP-Signaling Proteins/metabolism
15.
J Mater Chem B ; 12(15): 3614-3635, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38511264

ABSTRACT

Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.


Subject(s)
Inflammatory Bowel Diseases , Neoplasms , Humans , Biomimetics , Inflammatory Bowel Diseases/drug therapy , Drug Delivery Systems/methods , Forecasting , Neoplasms/drug therapy
16.
J Am Nutr Assoc ; 43(5): 437-451, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38305833

ABSTRACT

OBJECTIVE: Previous studies have shown that oyster peptides (OPs) have antioxidant and anti-fatigue activities. This study aimed to investigate the effects of OPs on swimming endurance in mice and the underlying mechanisms. METHODS: The mice were subjected to gavage with OPs and subjected to exercise training. After 14 days, various biochemical indicators in the blood and gastrocnemius muscle of mice were assessed, and real-time PCR was utilized to detect the level of signal pathway regulation by OPs in the gastrocnemius muscle. Molecular docking technology was employed to observe the potential active components in OPs that regulate signal pathways. RESULTS: In this study, OPs supplementation combined with and without exercise significantly extended swimming time compared to the sedentary group. OPs supplementation with exercise also increased glycogen levels and decreased blood urea nitrogen, lactate dehydrogenase, and lactic acid levels. Additionally, mice in the exercise with OPs group exhibited higher activities of antioxidant enzymes. OPs can upregulate metabolic regulatory factors such as AMP-activated protein kinase, peroxisome proliferator-activated receptor gamma coactivator-1 alpha, peroxisome proliferator-activated receptor delta, and glucose transporter 4, thereby increasing energy supply during exercise. Additionally, OPs enhances the expression of heme oxygenase 1 and superoxide dismutase 2, thereby reducing oxidative stress during physical activity. Molecular docking analyses revealed that peptides found in OPs formed hydrogen bonds with AMPK and HO-1, indicating that they can exert bioactivity by activating target proteins such as AMPK and HO-1. CONCLUSIONS: OPs supplementation improved energy reserves, modulated energy metabolism pathways, and coordinated antioxidative stress responses, ultimately enhancing swimming endurance. These findings suggest that OPs have the potential to improve exercise levels by promoting metabolism and improving energy utilization efficiency.


Subject(s)
AMP-Activated Protein Kinases , Heme Oxygenase-1 , Muscle, Skeletal , Physical Conditioning, Animal , Physical Endurance , Swimming , Animals , AMP-Activated Protein Kinases/metabolism , Mice , Heme Oxygenase-1/metabolism , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Physical Endurance/drug effects , Male , Peptides/pharmacology , Molecular Docking Simulation , Glycogen/metabolism , Ostreidae , Antioxidants/pharmacology , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Dietary Supplements , Membrane Proteins
17.
Front Genet ; 15: 1277541, 2024.
Article in English | MEDLINE | ID: mdl-38333620

ABSTRACT

Background: Thyroid hormone receptor-associated protein 3 (THRAP3) is of great significance in DNA damage response, pre-mRNA processing, and nuclear export. However, the biological activities of THRAP3 in pan-cancer remain unexplored. We aimed to conduct a comprehensive analysis of THRAP3 and validate its expression levels in lung cancer. Methods: A pan-cancer analysis was conducted to study the correlation of THRAP3 expression with clinical outcome and the tumor microenvironment based on the available bioinformatics databases. The protein levels of THRAP3 were explored in lung cancer by immunohistochemistry (IHC) analysis. Single-cell sequencing (ScRNA-seq) analysis was employed to investigate the proportions of each cell type in lung adenocarcinoma (LUAD) and adjacent normal tissues, along with the expression levels of THRAP3 within each cell type. Results: THRAP3 is upregulated in multiple cancer types but exhibits low expression in lung squamous cell carcinoma (LUSC). immunohistochemistry results showed that THRAP3 is a lowly expression in LUAD and LUSC. THRAP3 elevation had a poor prognosis in kidney renal clear cell carcinoma and a prolonged survival time in kidney chromophobe, brain lower-grade glioma and skin cutaneous melanoma, as indicated by the KM curve. Single-cell analysis confirmed that the proportions of T/B cells, macrophages, and fibroblasts were significantly elevated in LUAD tissues, and THRAP3 is specifically overexpressed in mast cells. Conclusion: Our findings uncover that THRAP3 is a promising prognostic biomarker and immunotherapeutic target in multiple cancers, but in LUAD and LUSC, it may be a protective gene.

18.
Int Immunopharmacol ; 130: 111696, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38412672

ABSTRACT

BACKGROUND: Immune checkpoint blockers (ICBs) plus chemotherapy as neoadjuvant therapy for patients with esophageal cancer (EC) has gained substantial attention. This study aimed to investigate the early and mid-term outcome of neoadjuvant ICBs plus chemotherapy and discover immune-associated predictors of major pathological response (MPR) for locally advanced EC. METHOD: Patients with locally advanced EC who received neoadjuvant ICBs plus chemotherapy were retrospectively included between June 2019 to December 2021. Conjoint analysis of Bulk-RNA seq (GSE165252) and scRNA seq (GSE188900) were used to investigate potential prognostic factors and immunological mechanisms, then multiplexed immunofluorescence was applied to validate. RESULTS: 76 patients were included. A total of 21 (27.6 %) patients achieved MPR, with 13 (17.1 %) attaining a pathological complete response. Over a median follow-up of 1.8 years, 6 (7.9 %) patients died and 21 (27.6 %) experienced disease recurrence within 0.6 to 2.1 years after surgery. The overall survival rate and recurrence-free survival rate were 93.3 + 2.9 % and 84.8 + 4.2 % at 12 months, 90.8 + 3.7 % and 67.1 + 6.4 % at 24 months, and 90.8 + 3.7 % and 62.9 + 7.2 % at 36 months, respectively. Patients achieving MPR had a significantly lower risk of recurrence compared to non-responders (9.5 % vs 34.5 %, P = 0.017). Analysis of bulk-RNA seq and scRNA-seq revealed that UBE2C and UBE2C + CD8 + T cells were adverse prognostic factors. Immunohistochemistry demonstrated that the non-MPR group had a higher infiltration of UBE2C + immune cells than MPR group after neoadjuvant treatment. Multiplexed immunofluorescence confirmed that infiltrating UBE2C + CD8 + T cells in MPR group were significantly fewer than non-MPR group after neoadjuvant treatment, indicating their poor prognostic role for EC. CONCLUSIONS: Neoadjuvant ICBs plus chemotherapy shows promising efficacy in locally advanced EC, with MPR being a significant predictor of lower recurrence risk. Immunological analyses identified UBE2C + CD8 + T cells as adverse prognostic factors, suggesting their potential as biomarkers for patient stratification and treatment response.


Subject(s)
Esophageal Neoplasms , Neoadjuvant Therapy , Humans , Prognosis , Immune Checkpoint Inhibitors/therapeutic use , Retrospective Studies , Neoplasm Recurrence, Local , Esophageal Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Ubiquitin-Conjugating Enzymes
19.
Rev Sci Instrum ; 95(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38416043

ABSTRACT

Direct-conversion receivers (DCRs) have been widely used in recent years due to their small size and low power consumption. However, the mismatch between the in-phase (I) and the quadrature (Q) branches will seriously affect the performance of the DCRs. This paper proposes a novel blind compensation method to suppress the interference introduced by IQ mismatch. Based on the Hilbert transform, our proposed method can obtain the orthogonal signal of the I-channel signal by utilizing the Weaver architecture. Compared with traditional compensation methods, the main difference of the proposed method is that it ignores prior information, training sequences, and additional hardware circuits. Furthermore, the complexity of the proposed blind compensation method is low because no iterative operations are involved in the compensation process. The simulation results show that the proposed method has an excellent compensation performance, especially in wideband applications.

20.
Org Lett ; 26(7): 1393-1398, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38346022

ABSTRACT

We disclose herein a photocatalytic radical cascade cyclization of diazoalkanes for the divergent synthesis of important carbocycles and heterocycles. Under the optimal reaction conditions, various indanone, pyrone, and pyridinone derivatives can be obtained in moderate to good yields. Mechanistic experiments support the formation of carbon-centered radicals from diazoalkanes through the proton-coupled electron transfer process. Scale-up reaction using continuous flow technology and useful downstream application of the formed heterocycles further render the strategy attractive and valuable.

SELECTION OF CITATIONS
SEARCH DETAIL
...