Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 23(2): 188, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35069869

ABSTRACT

Myocardial ischemia-reperfusion injury (MIRI) is an event that follows a myocardial infarction. As such, close observation and appropriate patient management is paramount in the treatment process of interventional surgery. The pathogenesis of MIRI has not been fully elucidated. Therefore, the aim of the present study was to explore of novel targets for MIRI treatment whilst also determining their possible underlying mechanism of action. The plasma samples used in the present study were collected from 30 patients with ischemic cardiomyopathy and 30 healthy volunteers. H9c2 rat cardiomyoblasts were subjected to hypoxia and reoxygenation (H/R) modeling to establish an in vitro MIRI model. Initially, the expression levels of Cbl proto-oncogene (CBL) in ICM heart tissue, normal heart tissue, H/R-induced H9c2 cells and normal H9c2 cells were detected using quantitative PCR and western blotting. With the application of Cell Counting Kit-8, western blotting and Tunnel assay, the proliferation, oxidative stress and apoptosis of H/R-induced cells were assessed. Moreover, co-IP assay was employed to testify the interaction between CBL and GRB2. The present study revealed that CBL expression was upregulated in patients with ischemic cardiomyopathy and H/R-induced H9c2 cells in comparison with that in normal heart tissue and normal H9c2 cells, respectively. The genetic silence of CBL using small interfering RNA promoted the proliferation and oxidative stress of H/R-induced cells but repressed the apoptosis. The full-length wild-type of growth factor receptor-bound protein 2 (GRB2) was ligated into pcDNA3.1 to achieve GRB2 overexpression, which revealed that GRB2 overexpression reversed the effects of CBL knockdown on cells, suggesting that it may mediate these processes downstream. In conclusion, under hypoxic conditions, CBL knockdown promoted the proliferation and antioxidant capacity of cardiomyocytes whilst inhibiting apoptosis, by downregulating GRB2 expression. These findings revealed the underlying mechanism of action of this pathway, which can be exploited for the prevention or treatment of MIRI.

2.
Arch Biochem Biophys ; 671: 203-209, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31302140

ABSTRACT

Activation of the NLRP3 inflammasome plays an important role in high glucose- induced endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM). Dulaglutide, a newly developed glucagon-like peptide-1 receptor (GLP-1R) agonist, has been approved for the management of T2DM. In the current study, we aimed to investigate whether dulaglutide possesses a protective effect against high glucose- induced activation of the NLRP3 inflammasome. Our results indicate that dulaglutide treatment prevented high glucose- induced generation of reactive oxygen species (ROS) and protein carbonyl, as well as the expression of NADPH oxidase 4 (NOX-4) in human umbilical vein endothelial cells (HUVECs). Dulaglutide treatment could inhibit high glucose- induced release of lactate dehydrogenase (LDH) and the expression of TXNIP. Dulaglutide suppressed high glucose- induced activation of NLRP3 inflammasome by reducing the expression of NLRP3, ASC, and cleaved caspase 1 (P10). Notably, dulaglutide treatment suppressed high glucose- induced maturation of IL-1ß and IL-18. Mechanistically, our findings indicate that SIRT1 was involved in this process by showing that knockdown of SIRT1 by transfection with SIRT1 siRNA abolished the inhibitory effects of dulaglutide on IL-1ß and IL-18 secretion via suppression of NLRP3, ASC, and p10. These data suggest that dulaglutide might serve as a potential drug for the treatment of cardiovascular complications in T2DM patients.


Subject(s)
Endothelial Cells/drug effects , Glucagon-Like Peptides/analogs & derivatives , Glucose/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Oxidative Stress/drug effects , Recombinant Fusion Proteins/pharmacology , CARD Signaling Adaptor Proteins/metabolism , Carrier Proteins/metabolism , Caspase 1/metabolism , Glucagon-Like Peptides/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Inflammasomes/metabolism , L-Lactate Dehydrogenase/metabolism , NADPH Oxidase 4/metabolism , Protein Carbonylation/drug effects , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...