Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36557422

ABSTRACT

In this paper, a high-isolation multiple-input/multiple-output (MIMO) microstrip monopole antenna array is investigated. To reduce the mutual coupling between antenna elements, a novel composite parasitic element constituted by a T-shaped ground branch and an isolated branch was designed and analyzed. The proposed composite parasitic element is capable of generating a unique three-dimensional weak electric field, which can effectively suppress the mutual coupling between the antenna elements. To give an intuitive illustration about the design principle and decoupling strategy of the proposed antenna, the antenna design procedure was ingeniously divided into four steps, and three types of decoupling structures during the antenna evolution were meticulously analyzed at both the theoretical and the physical level. To validate the proposed decoupling concept, the antenna prototype was fabricated, measured, and evaluated. The reflection coefficient, transmission coefficient, radiation pattern, and antenna gain were studied, and remarkable consistency between the measured and simulated results was observed. The simulations showed that the antenna has a peak gain of 3.5 dBi, a low envelope correlation coefficient (ECC < 0.001), and a high radiation efficiency (radiation efficiency > 0.9). Parameters of the proposed MIMO antenna including electrical dimension, highest isolation level, and 20 dB isolation bandwidth were evaluated. Compared with the previous similar designs, the proposed antenna exhibits attractive features including compressed dimension (0.55λ0 × 0.46λ0), extremely high isolation level (approximately 43 dB), fabulous 20 dB isolation bandwidth (3.11−3.78 GHz, 19.4%), a high diversity gain (DG > 9.99 dB), an appropriate mean effective gain (−3.5 dB < MEG < −3 dB), and low design complexity.

2.
Micromachines (Basel) ; 13(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36557438

ABSTRACT

In this paper, a broadband left-handed circularly polarized (LHCP) corrugated horn antenna using a dielectric circular polarizer is proposed. Circularly polarized (CP) waves are generated by inserting an improved dovetail-shaped dielectric plate into the circular waveguide. Compared with the traditional dovetail-shaped circular polarizer, the proposed improved dovetail-shaped circular polarizer has a wider impedance bandwidth and 3 dB axial ratio bandwidth. A substrate-integrated waveguide (SIW) structure is designed as a wall to eliminate the influence of fixed grooves on the circular polarizer. The simulated reflection coefficient of the dielectric plate circular polarizer is less than -20 dB in the frequency band from 17.57 to 33.25 GHz. Then, a conical corrugated horn antenna with five corrugations and a four-level metal stepped rectangular-circular waveguide converter are designed and optimized. The simulated -10 dB impedance and 3 dB axial ratio (AR) bandwidths of the circularly polarized horn antenna integrated with the polarizer are 61% (17.1-32.8 GHz) and 60.9% (17.76-33.32 GHz), respectively. The simulated peak gain is 17.34 dBic. The measured -10 dB impedance is 52.7% (17.2-27.5 GHz).

3.
ScientificWorldJournal ; 2013: 402914, 2013.
Article in English | MEDLINE | ID: mdl-24222733

ABSTRACT

A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.


Subject(s)
Radio Waves , Radio/instrumentation , Wireless Technology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...