Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2262, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480732

ABSTRACT

The inter-subspecific indica-japonica hybrid rice confer potential higher yield than the widely used indica-indica intra-subspecific hybrid rice. Nevertheless, the utilization of this strong heterosis is currently hindered by asynchronous diurnal floret opening time (DFOT) of indica and japonica parental lines. Here, we identify OsMYB8 as a key regulator of rice DFOT. OsMYB8 induces the transcription of JA-Ile synthetase OsJAR1, thereby regulating the expression of genes related to cell osmolality and cell wall remodeling in lodicules to promote floret opening. Natural variations of OsMYB8 promoter contribute to its differential expression, thus differential transcription of OsJAR1 and accumulation of JA-Ile in lodicules of indica and japonica subspecies. Furthermore, introgression of the indica haplotype of OsMYB8 into japonica effectively promotes DFOT in japonica. Our findings reveal an OsMYB8-OsJAR1 module that regulates differential DFOT in indica and japonica, and provide a strategy for breeding early DFOT japonica to facilitate breeding of indica-japonica hybrids.


Subject(s)
Genes, Plant , Isoleucine/analogs & derivatives , Oryza , Plant Breeding , Hybrid Vigor , Cyclopentanes/metabolism , Oryza/metabolism
2.
Plants (Basel) ; 11(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35567103

ABSTRACT

The wide dispersion of glyphosate-resistant (GR) horseweed (Conyza canadensis (L.) Cronquist: synonym Erigeron canadensis L.) biotypes has been reported in agricultural fields in many states. GR traits may be transferred through seeds or pollen from fields with existing GR horseweed prevalence to surrounding fields. Understanding seed production and movement is essential when characterizing and predicting the spread of GR horseweed, yet a literature review indicates that there are no experimental data on dynamic (hourly) seed production and horizontal dispersion and deposition from horseweed. To obtain the dynamic data, two field experiments were performed, one in Illinois and one in Tennessee, USA in 2013 and 2014, respectively. Seed concentration and deposition along with atmospheric conditions were measured with samplers in the Illinois (184 m × 46 m, natural plants, density = 9.5 plants/m2) and Tennessee (6 m × 6 m, cultivated plants, density = 4 plants/m2) experimental fields and their surrounding areas along the downwind direction up to 1 km horizontally and 100 m vertically in the Illinois field and up to 32 m horizontally and 5 m vertically in the Tennessee field. The dynamic seed source strengths (emission rates) measured during two entire seed-shedding seasons were reported, ranging from 0 to 0.41 grains/plant/s for Illinois and ranging from 0 to 0.56 grains/plant/s for Tennessee. The average total seed production was an estimated 122,178 grains/plant for the duration of the Illinois experiment and 94,146 grains/plant for Tennessee. Seeds trapped by Rotorod samplers attached beneath two balloons in the Illinois field experiment were observed at heights of 80 to 100 m, indicating the possibility of long-distance transport. Normalized (by source data) seed deposition with distance followed a negative power exponential function. Seed emission and transport were affected mainly by wind speed. This study is the first to investigate dynamic horseweed seed emission, dispersion, and deposition for an entire seed-shedding season. The results will aid in the management of GR horseweed. The potential for regional effects of horseweed invasion may require all farmers to control horseweed in their individual fields.

3.
Rice (N Y) ; 15(1): 1, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34982277

ABSTRACT

BACKGROUND: The rice Waxy (Wx) gene plays a major role in seed amylose synthesis and consequently controls grain amylose content. Wx gene expression is highly regulated at the post-transcriptional level. In particular, the GT/TT polymorphism at the 5'splicing site of its 1st intron greatly affects this intron's splicing efficiency and defines two predominant Wx alleles, Wxa and Wxb. Wxa rice often harbours intermediate to high amylose contents, whereas Wxb rice exhibits low to intermediate amylose contents. By deleting the Wx 1st intron using CRISPR/Cas9 technology, we generate a completely novel Wx allele and further investigate how intron removal affects Wx gene expression and rice grain amylose content. RESULTS: CRISPR/Cas9-mediated targeted deletion of the Wx 1st intron was performed on 4 rice inbred lines: KY131 (Wxb), X32 (Wxb), X35 (Wxa) and X55 (Wxlv). Deletion of the 1st intron occurred in 8.6-11.8% of the primary transformants of these 4 inbred lines. Compared to wild-type plants, amylose content was significantly increased from 13.0% to approximately 24.0% in KY131 and X32 mutant lines, which both carried the Wxb allele. However, no significant difference in amylose content was observed between wild-type plants and X35 and X55 mutant lines, which carried the Wxa and Wxlv alleles, respectively. Wx gene expression analysis of wild-type plants and mutants yielded results that were highly consistent with amylose content results. KY131 and X32 mutants accumulated increased levels of steady mRNA transcripts compared with wild-type plants, whereas steady mRNA levels were not altered in X35 and X55 mutants compared with wild-type plants. Grain quality, including appearance quality and eating and cooking quality, which are tightly associated with amylose content, was also assessed in wild-type and mutant plants, and data were presented and analysed. CONCLUSIONS: This study presents a novel and rapid strategy to increase amylose content in inbred rice carrying a Wxb allele. Our data strongly suggest that the 1st intron of the Wx gene regulates Wx gene expression mainly at the post-transcriptional level in rice. This finding is in contrast to a previous hypothesis suggesting that it influences Wx gene transcription. In addition, removal of the first intron generates a completely novel Wx allele. Further studies on this new Wx allele will provide invaluable insights into the regulation of Wx gene expression, which will help researchers engineer new Wx alleles to facilitate the breeding of rice cultivars with better eating and cooking quality.

4.
J Gen Virol ; 99(10): 1418-1424, 2018 10.
Article in English | MEDLINE | ID: mdl-30156527

ABSTRACT

Analysis of transcriptome sequence data from eggs and second-stage juveniles (J2s) of sugar beet cyst nematode (SBCN, Heterodera schachtii) identified the full-length genome of a positive-sense single-stranded RNA virus, provisionally named sugar beet cyst nematode virus 1 (SBCNV1). The SBCNV1 sequence was detected in both eggs and J2s, indicating its possible vertical transmission. The 9503-nucleotide genome sequence contains a single long open reading frame, which was predicted to encode a polyprotein with conserved domains for picornaviral structural proteins proximal to its amino terminus and RNA helicase, cysteine proteinase and RNA-dependent RNA polymerase (RdRp) conserved domains proximal to its carboxyl terminus, hallmarks of viruses belonging to the order Picornavirales. Phylogenetic analysis of the predicted SBCNV1 RdRp amino acid sequence indicated that the SBCNV1 sequence is most closely related to members of the family Secoviridae, which includes genera of nematode-transmitted plant-infecting viruses. SBCNV1 represents the first fully sequenced viral genome from SBCN.


Subject(s)
Beta vulgaris/parasitology , Picornaviridae/classification , Picornaviridae/isolation & purification , Transcriptome , Tylenchoidea/virology , Animals , Genome, Viral , Molecular Sequence Annotation , Open Reading Frames , Phylogeny , Picornaviridae/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA , Sequence Analysis, RNA , Sequence Homology, Amino Acid , Tylenchoidea/genetics , Tylenchoidea/growth & development , Viral Proteins/genetics
5.
Biotechnol Biofuels ; 11: 122, 2018.
Article in English | MEDLINE | ID: mdl-29713381

ABSTRACT

BACKGROUND: Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. RESULTS: We identified and functionally characterized three switchgrass green tissue-specific promoters and assessed marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. CONCLUSIONS: Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.

6.
Plant Cell Rep ; 37(4): 587-597, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29340787

ABSTRACT

KEY MESSAGE: A switchgrass vascular tissue-specific promoter (PvPfn2) and its 5'-end serial deletions drive high levels of vascular bundle transgene expression in transgenic rice. Constitutive promoters are widely used for crop genetic engineering, which can result in multiple off-target effects, including suboptimal growth and epigenetic gene silencing. These problems can be potentially avoided using tissue-specific promoters for targeted transgene expression. One particularly urgent need for targeted cell wall modification in bioenergy crops, such as switchgrass (Panicum virgatum L.), is the development of vasculature-active promoters to express cell wall-affective genes only in the specific tissues, i.e., xylem and phloem. From a switchgrass expression atlas we identified promoter sequence upstream of a vasculature-specific switchgrass profilin gene (PvPfn2), especially in roots, nodes and inflorescences. When the putative full-length (1715 bp) and 5'-end serial deletions of the PvPfn2 promoter (shortest was 413 bp) were used to drive the GUS reporter expression in stably transformed rice (Oryza sativa L.), strong vasculature-specificity was observed in various tissues including leaves, leaf sheaths, stems, and flowers. The promoters were active in both phloem and xylem. It is interesting to note that the promoter was active in many more tissues in the heterologous rice system than in switchgrass. Surprisingly, all four 5'-end promoter deletions, including the shortest fragment, had the same expression patterns as the full-length promoter and with no attenuation in GUS expression in rice. These results indicated that the PvPfn2 promoter variants are new tools to direct transgene expression specifically to vascular tissues in monocots. Of special interest is the very compact version of the promoter, which could be of use for vasculature-specific genetic engineering in monocots.


Subject(s)
Oryza/genetics , Panicum/genetics , Plant Proteins/genetics , Plant Vascular Bundle/genetics , Profilins/genetics , Promoter Regions, Genetic/genetics , Amino Acid Sequence , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Glucuronidase/genetics , Glucuronidase/metabolism , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plant Vascular Bundle/metabolism , Plants, Genetically Modified , Sequence Homology, Amino Acid , Transgenes/genetics
7.
BMC Biotechnol ; 17(1): 40, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28464851

ABSTRACT

BACKGROUND: Switchgrass is C4 perennial grass species that is being developed as a cellulosic bioenergy feedstock. It is wind-pollinated and considered to be an obligate outcrosser. Genetic engineering has been used to alter cell walls for more facile bioprocessing and biofuel yield. Gene flow from transgenic cultivars would likely be of regulatory concern. In this study we investigated pollen-mediated gene flow from transgenic to nontransgenic switchgrass in a 3-year field experiment performed in Oliver Springs, Tennessee, U.S.A. using a modified Nelder wheel design. The planted area (0.6 ha) contained sexually compatible pollen source and pollen receptor switchgrass plants. One hundred clonal switchgrass 'Alamo' plants transgenic for an orange-fluorescent protein (OFP) and hygromycin resistance were used as the pollen source; whole plants, including pollen, were orange-fluorescent. To assess pollen movement, pollen traps were placed at 10 m intervals from the pollen-source plot in the four cardinal directions extending to 20 m, 30 m, 30 m, and 100 m to the north, south, west, and east, respectively. To assess pollination rates, nontransgenic 'Alamo 2' switchgrass clones were planted in pairs adjacent to pollen traps. RESULTS: In the eastward direction there was a 98% decrease in OFP pollen grains from 10 to 100 m from the pollen-source plot (Poisson regression, F1,8 = 288.38, P < 0.0001). At the end of the second and third year, 1,820 F1 seeds were collected from pollen recipient-plots of which 962 (52.9%) germinated and analyzed for their transgenic status. Transgenic progeny production detected in each pollen-recipient plot decreased with increased distance from the edge of the transgenic plot (Poisson regression, F1,15 = 12.98, P < 0.003). The frequency of transgenic progeny detected in the eastward plots (the direction of the prevailing wind) ranged from 79.2% at 10 m to 9.3% at 100 m. CONCLUSIONS: In these experiments we found transgenic pollen movement and hybridization rates to be inversely associated with distance. However, these data suggest pollen-mediated gene flow is likely to occur up to, at least, 100 m. This study gives baseline data useful to determine isolation distances and other management practices should transgenic switchgrass be grown commercially in relevant environments.


Subject(s)
Gene Flow , Genes, Plant , Panicum/genetics , Pollen/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Panicum/growth & development , Panicum/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/physiology , Poisson Distribution , Seeds/growth & development , Seeds/physiology , Time Factors
8.
Front Plant Sci ; 8: 63, 2017.
Article in English | MEDLINE | ID: mdl-28179911

ABSTRACT

Coconut (Cocos nucifera L.) is a key tropical crop and a member of the monocotyledonous family Arecaceae (Palmaceae). Few genes and related metabolic processes involved in coconut endosperm development have been investigated. In this study, a new member of the WRI1 gene family was isolated from coconut endosperm and was named CoWRI1. Its transcriptional activities and interactions with the acetyl-CoA carboxylase (BCCP2) promoter of CoWRI1 were confirmed by the yeast two-hybrid and yeast one-hybrid approaches, respectively. Functional characterization was carried out through seed-specific expression in Arabidopsis and endosperm-specific expression in rice. In transgenic Arabidopsis, high over-expressions of CoWRI1 in seven independent T2 lines were detected by quantitative real-time PCR. The relative mRNA accumulation of genes encoding enzymes involved in either fatty acid biosynthesis or triacylglycerols assembly (BCCP2, KASI, MAT, ENR, FATA, and GPDH) were also assayed in mature seeds. Furthermore, lipid and fatty acids C16:0 and C18:0 significantly increased. In two homozygous T2 transgenic rice lines (G5 and G2), different CoWRI1 expression levels were detected, but no CoWRI1 transcripts were detected in the wild type. Analyses of the seed oil content, starch content, and total protein content indicated that the two T2 transgenic lines showed a significant increase (P < 0.05) in seed oil content. The transgenic lines also showed a significant increase in starch content, whereas total protein content decreased significantly. Further analysis of the fatty acid composition revealed that palmitic acid (C16:0) and linolenic acid (C18:3) increased significantly in the seeds of the transgenic rice lines, but oleic acid (C18:1) levels significantly declined.

9.
Sci Rep ; 5: 18256, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26655679

ABSTRACT

As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.


Subject(s)
Gene Expression Regulation, Plant , Oryza/genetics , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Computational Biology/methods , Mutagenesis, Site-Directed , Organ Specificity/genetics , Plant Proteins/genetics
10.
Ecol Evol ; 5(13): 2646-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26257877

ABSTRACT

Horseweed (Conyza canadensis) is a problem weed in crop production because of its evolved resistance to glyphosate and other herbicides. Although horseweed is mainly self-pollinating, glyphosate-resistant (GR) horseweed can pollinate glyphosate-susceptible (GS) horseweed. To the best of our knowledge, however, there are no available data on horseweed pollen production, dispersion, and deposition relative to gene flow and the evolution of resistance. To help fill this knowledge gap, a 43-day field study was performed in Champaign, Illinois, USA in 2013 to characterize horseweed atmospheric pollen emission, dispersion, and deposition. Pollen concentration and deposition, coupled with atmospheric data, were measured in a source field (180 m by 46 m) and its surrounding areas up to 1 km downwind horizontally and up to 100 m vertically. The source strength (emission rate) ranged from 0 to 140 pollen grains per plant per second (1170 to 2.1×10(6) per plant per day). For the life of the study, the estimated number of pollen grains generated from this source field was 10.5×10(10) (2.3×10(6) per plant). The release of horseweed pollen was not strongly correlated to meteorological data and may be mainly determined by horseweed physiology. Horseweed pollen reached heights of 80 to100 m, making long-distance transport possible. Normalized (by source data) pollen deposition with distance followed a negative-power exponential curve. Normalized pollen deposition was 2.5% even at 480 m downwind from the source edge. Correlation analysis showed that close to or inside the source field at lower heights (≤3 m) vertical transport was related to vertical wind speed, while horizontal pollen transport was related to horizontal wind speed. High relative humidity prevented pollen transport at greater heights (3-100 m) and longer distances (0-1000 m) from the source. This study can contribute to the understanding of how herbicide-resistance weeds or invasive plants affect ecology through wind-mediated pollination and invasion.

11.
Plant Cell Rep ; 31(7): 1159-72, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22388917

ABSTRACT

UNLABELLED: In plant genetic engineering, using tissue-specific promoters to control the expression of target gene is an effective way to avoid potential negative effects of using constitutive promoter, such as metabolic burden and so on. However, until now, there are few tissue-specific promoters with strong and reliable expression that could be used in crop biotechnology application. In this study, based on microarray and RT-PCR data, we identified a rice green tissue-specific expression gene DX1 (LOC_Os12g33120). The expression pattern of DX1 gene promoter was examined by using the ß-glucuronidase (GUS) reporter gene and analyzed in transgenic rice plants in different tissues. Histochemical assays and quantitative analyses of GUS activity confirmed that P (DX1):GUS was highly expressed in green tissues. To identify the regulatory elements controlling the expression of the DX1 gene, a series of 5' and 3' deletions of DX1 promoter were fused to GUS gene and stably introduced into rice plants. In addition, gel mobility shift assays and site-directed mutagenesis studies were used, allowing for the identification of two novel tissue-specific cis-acting elements (GSE1 and GSE2) within P(DX1). GSE1 acted as a positive regulator in all green tissues (leaf, sheath, stem and panicle). Compared with GSE1, GSE2 acted as a positive regulator only in sheath and stem tissue, and had a weaker effect on gene expression. In addition, P(DX1):GUS was not expressed in anther and seed, this characteristic reduced the potential ecological risk and potential food safety issues. Taken together, our results strongly suggest that the identified promoter, P(DX1), and its cis regulatory elements, GSE1 and GSE2, are potentially useful in the field of rice transgenic breeding. KEY MESSAGE: We have isolated and characterized the rice green tissue-specific promoter P(DX1), and identified two novel positive cis-acting elements in P(DX1).


Subject(s)
Gene Expression Regulation, Plant , Oryza/genetics , Promoter Regions, Genetic , Regulatory Elements, Transcriptional , Genes, Reporter , Genetic Engineering , Mutagenesis, Site-Directed , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified/genetics , RNA, Plant/genetics , Sequence Analysis, DNA , Transformation, Genetic
12.
Photosynth Res ; 108(2-3): 157-70, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21739352

ABSTRACT

This is the first effort to investigate the candidate genes involved in kranz developmental regulation and C(4) metabolic fluxes in Eleocharis vivipara, which is a leafless freshwater amphibious plant and possesses a distinct culms anatomy structure and photosynthetic pattern in contrasting environments. A terrestrial specific SSH library was constructed to investigate the genes involved in kranz anatomy developmental regulation and C(4) metabolic fluxes. A total of 73 ESTs and 56 unigenes in 384 clones were identified by array hybridization and sequencing. In total, 50 unigenes had homologous genes in the databases of rice and Arabidopsis. The real-time quantitative PCR results showed that most of the genes were accumulated in terrestrial culms and ABA-induced culms. The C(4) marker genes were stably accumulated during the culms development process in terrestrial culms. With respect to C(3) culms, C(4) photosynthesis metabolism consumed much more transporters and translocators related to ion metabolism, organic acids and carbohydrate metabolism, phosphate metabolism, amino acids metabolism, and lipids metabolism. Additionally, ten regulatory genes including five transcription factors, four receptor-like proteins, and one BURP protein were identified. These regulatory genes, which co-accumulated with the culms developmental stages, may play important roles in culms structure developmental regulation, bundle sheath chloroplast maturation, and environmental response. These results shed new light on the C(4) metabolic fluxes, environmental response, and anatomy structure developmental regulation in E. vivipara.


Subject(s)
Carbon/metabolism , Eleocharis/genetics , Eleocharis/metabolism , Genes, Plant/genetics , Genes, Regulator/genetics , Photosynthesis/genetics , Abscisic Acid/metabolism , Biological Evolution , Electrons , Eleocharis/anatomy & histology , Eleocharis/radiation effects , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Gene Library , Light , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Molecular Sequence Annotation , Nucleic Acid Hybridization , Photosynthesis/radiation effects , Plant Growth Regulators/metabolism , Plant Stems/anatomy & histology , Plant Stems/genetics , RNA, Plant/genetics , Signal Transduction/genetics , Signal Transduction/radiation effects , Up-Regulation/radiation effects , Water
13.
Plant Cell Rep ; 29(9): 1061-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20589378

ABSTRACT

As one of the key tropical crops, coconut (Cocos nucifera L.) is a member of the monocotyledonous family Aracaceae (Palmaceae). In this study, we amplified the upstream region of an endosperm-specific expression gene, Lysophosphatidyl acyltransferase (LPAAT), from the coconut genomic DNA by chromosome walking. In this sequence, we found several types of promoter-related elements including TATA-box, CAAT-box and Skn1-motif. In order to further examine its function, three different 5'-deletion fragments were inserted into pBI101.3, a plant expression vector harboring the LPAAT upstream sequence, leading to pBI101.3-L1, pBI101.3-L2 and pBI101.3-L3, respectively. We obtained transgenic plants of rice by Agrobacterium-mediated callus transformation and plant regeneration and detected the expression of gus gene by histochemical staining and fluorometric determination. We found that gus gene driven by the three deletion fragments was specifically expressed in the endosperm of rice seeds, but not in the empty vector of pBI101.3 and other tissues. The highest expression level of GUS was at 15 DAF in pBI101.3-L3 and pBI101.3-L2 transgenic lines, while the same level was detected at 10 DAF in pBI101.3-L1. The expression driven by the whole fragment was up to 1.76- and 2.8-fold higher than those driven by the -817 bp and -453 bp upstream fragments, and 10.7-fold higher than that driven by the vector without the promoter. Taken together, our results strongly suggest that these promoter fragments from coconut have a significant potential in genetically improving endosperm in main crops.


Subject(s)
Cocos/genetics , Endosperm/genetics , Oryza/metabolism , Promoter Regions, Genetic , Acyltransferases/genetics , Agrobacterium tumefaciens/genetics , Base Sequence , Cloning, Molecular , Cocos/enzymology , DNA, Plant/genetics , Gene Expression Regulation, Plant , Molecular Sequence Data , Oryza/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Sequence Analysis, DNA , Transformation, Genetic
14.
Plant J ; 61(5): 752-66, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20003165

ABSTRACT

Growth and development of a plant are controlled by programmed expression of suits of genes at the appropriate time, tissue and abundance. Although genomic resources have been developed rapidly in recent years in rice, a model plant for cereal genome research, data of gene expression profiling are still insufficient to relate the developmental processes to transcriptomes, leaving a large gap between the genome sequence and phenotype. In this study, we generated genome-wide expression data by hybridizing 190 Affymetrix GeneChip Rice Genome Arrays with RNA from 39 tissues collected throughout the life cycle of the rice plant from two varieties, Zhenshan 97 and Minghui 63. Analyses of the global transcriptomes revealed many interesting features of dynamic patterns of gene expression across the tissues and stages. In total, 38 793 probe sets were detected as expressed and 69% of the expressed transcripts showed significantly variable expression levels among tissues/organs. We found that similarity of transcriptomes among organs corresponded well to their developmental relatedness. About 5.2% of the expressed transcripts showed tissue-specific expression in one or both varieties and 22.7% of the transcripts exhibited constitutive expression including 19 genes with high and stable expression in all the tissues. This dataset provided a versatile resource for plant genomic research, which can be used for associating the transcriptomes to the developmental processes, understanding the regulatory network of these processes, tracing the expression profile of individual genes and identifying reference genes for quantitative expression analyses.


Subject(s)
Gene Expression Profiling , Genome, Plant , Oryza/genetics , Gene Expression Regulation, Plant , Genes, Plant , Oligonucleotide Array Sequence Analysis , Oryza/growth & development , RNA, Plant/genetics
15.
Pest Manag Sci ; 65(9): 1015-20, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19479952

ABSTRACT

BACKGROUND: Yellow stem borer (Tryporyza incertulas Walker), striped stem borer (Chilo suppressalis Walker) and leaf folder (Cnaphalocrocis medinalis Guenec) are three lepidopteran pests that cause severe damage to rice in many areas of the world. In this study, novel insect-resistant transgenic rice was developed in which Bt protein expression was nearly absent in the endosperm. The resistant gene, cry1C*, driven by the rice rbcS promoter (small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), was introduced into Zhonghua 11 (Oryza sativa L. ssp. japonica) by Agrobacterium-mediated transformation. RESULTS: A total of 83 independent transformants were obtained, 19 of which were characterised as single-copy foreign gene insertion. After preliminary screening of the T(1) families of these 19 transformants in the field, six highly insect-resistant homozygous lines were selected. These six homozygous transgenic lines were field tested for resistance to leaf folders and stem borers, and for their agronomic performance. The Cry1C* protein levels in leaves and endosperm were measured by ELISA. Subsequently, the elite transgenic line RJ5 was selected; this line not only possessed high resistance to leaf folders and stem borers, normal agronomic performance, but also Cry1C* expression was only 2.6 ng g(-1) in the endosperm. CONCLUSION: These results indicated that RJ5 has the potential for widespread utility in rice production.


Subject(s)
Bacterial Proteins/metabolism , Endotoxins/metabolism , Hemolysin Proteins/metabolism , Insecta/physiology , Oryza/physiology , Plant Diseases/parasitology , Plants, Genetically Modified/physiology , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Endotoxins/genetics , Hemolysin Proteins/genetics , Oryza/genetics , Oryza/parasitology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/parasitology
16.
Plant Mol Biol ; 67(1-2): 37-55, 2008 May.
Article in English | MEDLINE | ID: mdl-18330710

ABSTRACT

Leaf senescence is one of the key stages of plant leaf development. It is a highly complex but ordered process involving expression of large scale senescence associated genes, and its molecular mechanisms still remain unclear. By using suppression subtractive hybridization, 815 ESTs that are up-regulated at the onset of rice flag leaf senescence have been isolated. A total of 533 unigenes have been confirmed by macroarray detection and sequencing. 183 of these unigenes have GO annotations, involved in macromolecule metabolism, protein biosynthesis regulation, energy metabolism, gene expression regulations, detoxification, pathogenicity and stress, cytoskeleton organization and flower development. Another 121 unigenes co-localized with previously reported known stay-green QTLS. RT-PCR analysis on the other novel genes indicated that they can be up-regulated in natural early senescence and induced by hormone. Our results indicate that senescence is closely related to various metabolic pathways, thus providing new insight into the onset of leaf senescence mechanism.


Subject(s)
Genes, Plant , Oryza/growth & development , Oryza/genetics , Apoptosis/genetics , Arabidopsis/genetics , Chromosome Mapping , Expressed Sequence Tags , Flowers/genetics , Flowers/growth & development , Gene Expression Profiling , Gene Library , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Oryza/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Protein Biosynthesis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...