Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Psychiatry ; 14: 1138110, 2023.
Article in English | MEDLINE | ID: mdl-36970289

ABSTRACT

Major depressive disorder (MDD) is a serious mental disease characterized by depressed mood, loss of interest and suicidal ideation. Its rising prevalence has rendered MDD one of the largest contributors to the global disease burden. However, its pathophysiological mechanism is still unclear, and reliable biomarkers are lacking. Extracellular vesicles (EVs) are widely considered important mediators of intercellular communication, playing an important role in many physiological and pathological processes. Most preclinical studies focus on the related proteins and microRNAs in EVs, which can regulate energy metabolism, neurogenesis, neuro-inflammation and other pathophysiological processes in the development of MDD. The purpose of this review is to describe the current research progress of EVs in MDD and highlight their potential roles as biomarkers, therapeutic indicators and drug delivery carriers for the treatment of MDD.

2.
Soft Matter ; 12(47): 9520-9526, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27853804

ABSTRACT

Lateral diffusion of cyclic polystyrene at the interface between fused silica and dichloromethane is investigated at the single-molecular level. Narrowly distributed cyclic polystyrene (c-PS) of high purity with molecular weights spanning nearly an order of magnitude is prepared via atom transfer radical polymerization (ATRP) and Cu-catalyzed azide/alkyne cycloaddition (CuAAC) click reaction. The diffusion coefficients (D) of c-PS and its linear analogue (l-PS) on the surface are measured by fluorescence correlation spectroscopy (FCS). The diffusion coefficient of c-PS is discovered to have an inverse dependence on molecular weight, D ∼ M-1, in contrast to the case of linear polystyrene, which reproduces a stronger molecular weight dependence, D ∼ M-3/2. The slower interfacial motion of cyclic chains is attributed to their stronger binding to the surface and more importantly, the unique surface diffusion mechanism due to the absence of free chain ends.

SELECTION OF CITATIONS
SEARCH DETAIL
...