Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(2): e2206146120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36608291

ABSTRACT

The human ether-a-go-go-related gene (hERG) K+ channel conducts a rapidly activating delayed rectifier K+ current (IKr), which is essential for normal electrical activity of the heart. Precise regulation of hERG channel biogenesis is critical for serving its physiological functions, and deviations from the regulation result in human diseases. However, the mechanism underlying the precise regulation of hERG channel biogenesis remains elusive. Here, by using forward genetic screen, we found that PATR-1, the Caenorhabditis elegans homolog of the yeast DNA topoisomerase 2-associated protein PAT1, is a critical regulator for the biogenesis of UNC-103, the ERG K+ channel in C. elegans. A loss-of-function mutation in patr-1 down-regulates the expression level of UNC-103 proteins and suppresses the phenotypic defects resulted from a gain-of-function mutation in the unc-103 gene. Furthermore, downregulation of PATL1 and PATL2, the human homologs of PAT1, decreases protein levels and the current density of native hERG channels in SH-SY5Y cells and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Knockdown of PATL1 and PATL2 elongates the duration of action potentials in hiPSC-CMs, suggesting that PATL1 and PATL2 affect the function of hERG channels and hence electrophysiological characteristics in the human heart. Further studies found that PATL1 and PATL2 interact with TFIIE, a general transcription factor required for forming the RNA polymerase II preinitiation complex, and dual-luciferase reporter assays indicated that PATL1 and PATL2 facilitate the transcription of hERG mRNAs. Together, our study discovers that evolutionarily conserved DNA topoisomerase 2-associated proteins regulate the biogenesis of hERG channels via a transcriptional mechanism.


Subject(s)
Ether-A-Go-Go Potassium Channels , Neuroblastoma , Animals , Humans , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/metabolism , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Myocytes, Cardiac/metabolism , Neuroblastoma/metabolism , DNA-Binding Proteins/metabolism
2.
Nature ; 579(7797): 118-122, 2020 03.
Article in English | MEDLINE | ID: mdl-32103178

ABSTRACT

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Epigenesis, Genetic , Healthy Aging/genetics , Histone-Lysine N-Methyltransferase/metabolism , Transcription Factors, General/metabolism , Aging/genetics , Animals , Caenorhabditis elegans Proteins/genetics , Cognition , Cognitive Dysfunction , Histone-Lysine N-Methyltransferase/deficiency , Histone-Lysine N-Methyltransferase/genetics , Histones/chemistry , Histones/metabolism , Humans , Longevity/genetics , Lysine/metabolism , Male , Memory , Methylation , Mice , Mitochondria/metabolism , Neurons/metabolism , Proteins/genetics , RNA Interference , Spatial Learning , Transcription Factors, General/deficiency , Transcription Factors, General/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...