Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 14(17): 3599-3606, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-33973392

ABSTRACT

To date, the fused-ring electron acceptors show the best photovoltaic performances, and the development of simple non-fullerene acceptors via intramolecular noncovalent interactions can reduce synthetic costs. In this work, four simple non-fullerene acceptors with an A-D-A'-D-A configuration (QCIC1, QCIC2, QCIC3, and QCIC4) were synthesized. They contained the same conjugated backbone (A': quinoxaline; D: cyclopentadithiophene; A: dicyano-indanone) but different halogen atoms and alkyl side chains. Due to the chlorination on the end-groups and the most and/or longest branched alkyl side chains on the backbone, the blended film composed of QCIC3 and donor poly{[2,6'-4,8-di(5-ethylhexylthienyl)benzo [1,2-b : 4,5-b']dithiophene]-alt-[5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c : 4',5'-c']dithiophene-4,8-dione)]} (PBDB-T) exhibited the strongest π-π stacking and the most suitable phase-separation domains among the four blended films. Therefore, the QCIC3-based organic solar cells yielded the highest power conversion efficiency of 10.55 %. This work provides a pathway to optimize the molecular arrangements and enhance the photovoltaic property of simple electron acceptors through subtle chemical modifications.

2.
ACS Appl Mater Interfaces ; 10(24): 20755-20766, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29846056

ABSTRACT

Charged nanocellulose (NC) with a high aspect ratio (larger than 100) extracted from animal or bacterial cellulose and chemical cross-linked NC aerogels have great promising applicability in material science, but facile fabrication of such NC aerogels from plant cellulose by physical cross-linking still remains a major challenge. In this work, carboxylated cellulose nanofiber (CNF) with the highest aspect ratio of 144 was extracted from wasted ginger fibers by a simple one-step acid hydrolysis. Our approach could easily make the carboxylated CNF assemble into robust bulk aerogels with tunable densities and desirable shapes on a large scale (3D macropores to mesopores) by hydrogen bonds. Excitingly, these CNF aerogels had better compression mechanical properties (99.5 kPa at 80% strain) and high shape recovery. Moreover, the CNF aerogels had strong coagulation-flocculation ability (87.1%), removal efficiency of MB dye uptake (127.73 mg/g), and moderate Cu2+ absorption capacity (45.053 mg/g), which were due to assistance mechanisms of charge neutralization, network capture effect, and chain bridging of high aspect ratio carboxylated CNF. This provided a novel physical cross-linking method to design robust aerogels with modulated networked structures to be a general substrate material for industrial applications such as superabsorbent, flocculation, oil-water separation, and potential electrical energy storage materials.

3.
Int J Biol Macromol ; 113: 171-178, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29471093

ABSTRACT

Cross-linked polyvinyl alcohol (PVA) composite films with high structural stability were prepared by free radical copolymerization between cellulose nanocrystal (CNC) and maleic anhydride (MAH) modified PVA through spraying Fenton free radical as initiator. The influence of chemical cross-linked and physical network structure on mechanical, thermal and water absorption properties of the composite films were investigated. Compared to PVA and PVA/CNC composite film, significant improvements in the mechanical, thermal and water uptake properties of the cross-linked composite film were found. The tensile strength of the cross-linked composite film was enhanced from 23.1MPa (neat PVA film) and 32.6MPa (PVA/CNC-10%) to 42.5MPa, and the maximum thermal degradation temperature was increased from 266.8°C and 281.2°C to 366.7°C (cross-linked composite film). Besides, the water absorption was reduced from 385.9% and 220.6% to 175.7% for cross-linked composite film. It indicates that compared with physical network structure in PVA/CNC composite film, the multiple cross-linked networks showed excellent thermal stability, resistance of water swelling and structural stability at the same CNC loading level. Thus, the PVA/CNC composite film with the multiple cross-linked network shows greater property reinforcements.


Subject(s)
Cellulose/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Nanoparticles/chemistry , Polyvinyl Alcohol/chemistry , Absorption, Physicochemical , Hydrophobic and Hydrophilic Interactions , Nanocomposites/chemistry , Surface Properties , Temperature , Tensile Strength , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...