Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22119123

ABSTRACT

In this study, the noncovalent functionalization of graphene with cationic porphyrins in an aqueous medium was investigated using UV-vis and fluorescence approaches. To characterize the interaction between graphene and cationic porphyrins, 5,10,15,20-tetra (4-pyridyl)-21H,23H-porphine, 5,10,15,20-tetrakis (1-methyl-4-pyridinio) porphyrin tetra (p-toluenesulfonate) and 5,10,15,20-tetrakis (4-trimethylammoniophenyl) porphyrin tetra (p-toluenesulfonate) porphyrin were chosen as reagents. The intermolecular interactions were found to occur immediately after mixing the cationic porphyrins with graphene. The absorption spectra of the cationic porphyrins after mixing with graphene showed distinct red shifts of the Soret and Q-bands compared to free cationic porphyrins indicating that interactions occur between the cationic porphyrins and graphene. A strong fluorescence quenching of the cationic porphyrins in the presence of graphene indicated that efficient electron or energy transfer occurred from the excited state of the cationic porphyrins to graphene. Cationic porphyrins were immobilized on the surface of graphene through electrostatic and π-π stacking interactions, and the chemical shape of graphene played an important role in the intermolecular interactions and the red shift extent of cationic porphyrins is mostly dependent on the functional groups and charges of the graphene surface. The results show that less functional groups on the graphene's surface and edge would lead to stronger π-π stacking interactions between graphene and cationic porphyrins.


Subject(s)
Graphite/chemistry , Porphyrins/chemistry , Absorption , Carboxylic Acids/chemistry , Cations , Microscopy, Atomic Force , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...