Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 625(7995): 593-602, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38093017

ABSTRACT

Emerging data have shown that previously defined noncoding genomes might encode peptides that bind human leukocyte antigen (HLA) as cryptic antigens to stimulate adaptive immunity1,2. However, the significance and mechanisms of action of cryptic antigens in anti-tumour immunity remain unclear. Here mass spectrometry of the HLA class I (HLA-I) peptidome coupled with ribosome sequencing of human breast cancer samples identified HLA-I-binding cryptic antigenic peptides that were noncanonically translated by a tumour-specific circular RNA (circRNA): circFAM53B. The cryptic peptides efficiently primed naive CD4+ and CD8+ T cells in an antigen-specific manner and induced anti-tumour immunity. Clinically, the expression of circFAM53B and its encoded peptides was associated with substantial infiltration of antigen-specific CD8+ T cells and better survival in patients with breast cancer and patients with melanoma. Mechanistically, circFAM53B-encoded peptides had strong binding affinity to both HLA-I and HLA-II molecules. In vivo, administration of vaccines consisting of tumour-specific circRNA or its encoded peptides in mice bearing breast cancer tumours or melanoma induced enhanced infiltration of tumour-antigen-specific cytotoxic T cells, which led to effective tumour control. Overall, our findings reveal that noncanonical translation of circRNAs can drive efficient anti-tumour immunity, which suggests that vaccination exploiting tumour-specific circRNAs may serve as an immunotherapeutic strategy against malignant tumours.


Subject(s)
Breast Neoplasms , Melanoma , Peptides , Protein Biosynthesis , RNA, Circular , Animals , Female , Humans , Mice , Antigens, Neoplasm/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/pathology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Mass Spectrometry , Melanoma/genetics , Melanoma/immunology , Melanoma/mortality , Melanoma/pathology , Peptides/genetics , Peptides/immunology , Ribosome Profiling , RNA, Circular/genetics , RNA, Circular/metabolism , Survival Analysis
2.
Nat Commun ; 13(1): 7160, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36418319

ABSTRACT

Aromatase inhibition is an efficient endocrine therapy to block ectopic estrogen production for postmenopausal estrogen receptor (ER)-positive breast cancer patients, but many develop resistance. Here, we show that aromatase inhibitor (AI)-resistant breast tumors display features of enhanced aerobic glycolysis with upregulation of long noncoding RNA (lncRNA) DIO3OS, which correlates with poor prognosis of breast cancer patients on AI therapies. Long-term estrogen deprivation induces DIO3OS expression in ER-positive breast tumor cells, which further enhances aerobic glycolysis and promotes estrogen-independent cell proliferation in vitro and in vivo. Mechanistically, DIO3OS interacts with polypyrimidine tract binding protein 1 (PTBP1) and stabilizes the mRNA of lactate dehydrogenase A (LDHA) by protecting the integrity of its 3'UTR, and subsequently upregulates LDHA expression and activates glycolytic metabolism in AI-resistant breast cancer cells. Our findings highlight the role of lncRNA in regulating the key enzyme of glycolytic metabolism in response to endocrine therapies and the potential of targeting DIO3OS to reverse AI resistance in ER-positive breast cancer.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Aromatase Inhibitors/pharmacology , Aromatase Inhibitors/therapeutic use , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Glycolysis/genetics , Estrogens/pharmacology , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/metabolism
3.
Food Chem ; 357: 129753, 2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33878585

ABSTRACT

Hydrogen peroxide (H2O2) is usually used as a fungicide in food, it is carcinogenic, accelerates aging or inducing toxic effects such as cardiovascular disease. Herein, to meet the demand for effective and fast detection of H2O2 in food, a novel non-enzymatic electrochemiluminescence (ECL) sensor based on single-stranded DNA (ssDNA)/g-C3N4 nanosheets (NS) was established. The ssDNA/g-C3N4 NS hybrid was prepared by simple mixing g-C3N4 NS and ssDNA solution together. The prepared ssDNA/g-C3N4 NS exhibited improved peroxidase-like activity and was modified on a glassy carbon electrode to catalyze the ECL reaction of luminol-H2O2 to amplify the luminescence signal. Under the optimized conditions, the proposed sensor exhibits high sensitivity with a limit of detection (LOD) as low as 33 aM H2O2, which is much lower than the vast majority of reported methods. This method enables the reliable responding to H2O2 from the milk samples within 1 min.

4.
Biosens Bioelectron ; 176: 112954, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33412428

ABSTRACT

CRISPR/Cas system have drawn increasing attention in accurate and sensitive nucleic acids detection. Herein, we reported a novel Cas12a-based electrochemiluminescence biosensor for target amplification-free human papilloma virus subtype (HPV-16) DNA detection. During this detection process, Cas12a employed its two-part recognition mechanism to improve the specificity and trans-cleavage capability to achieve signal amplification, while L-Methionine stabilized gold nanoclusters (Met-AuNCs) were served as high-efficiency ECL emitters to achieve ECL signal transition. Given the unique combination of Cas12a with ECL technique, the detection limit was determined as 0.48 pM and the whole detection could be completed within 70 min. We also validated the practical application of the proposed biosensor by using undiluted human blood samples, which gives impetus to the design of new generations of CRISPR/Cas detection system beyond the traditional ones with ultimate applications in sensing analysis and diagnostic technologies.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , DNA/genetics , Gold , Humans , Nucleic Acid Amplification Techniques
5.
ACS Sens ; 5(11): 3584-3590, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33170660

ABSTRACT

In contrast to common DNA walkers, multipedal DNA walkers exhibit larger walking area and faster walking kinetics and provide increased amplification efficiency. Consequently, they have received a considerable amount of attention in biosensing. However, most of them are synthesized by immobilizing multiple DNA walking strands on the surface of Au nanoparticles, which is tedious and time-consuming. Simple preparation of multipedal DNA walkers remains a challenge. Herein, we adopted a simple enzyme-free target-triggered catalytic hairpin assembly (CHA) circuit to synthesize a tripedal DNA walker. By walking on a DNA track-functionalized electrode, a sensitive electrochemiluminescence DNA nanomachine biosensor was constructed for sensing miRNA-21. The DNA walker was powered by toehold-mediated strand displacement; the whole process did not need the assistance of enzymes, thus avoiding tedious procedures and enzyme degradation under unfavorable environmental conditions. Specifically, a superior detection limit of 4 aM and a broad linear range of 10 aM to 1 pM were achieved. This CHA-tripedal DNA walker biosensor was then applied for the detection of miRNA-21 in human serum and showed high selectivity and excellent reproducibility, demonstrating its practical application in bioanalysis. In particular, the Y-shaped tripedal DNA walker comes from the DNA circuit, which makes the approach ideally suited for biosensing of small nucleic acid targets.


Subject(s)
Metal Nanoparticles , MicroRNAs , DNA/genetics , Gold , Humans , Limit of Detection , MicroRNAs/blood , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...