Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 640
Filter
1.
Article in English | MEDLINE | ID: mdl-38968001

ABSTRACT

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.

2.
BMC Public Health ; 24(1): 1471, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824589

ABSTRACT

BACKGROUND: Adolescent malignant-bone tumor patients' fear of cancer recurrence is a significant psychological issue, and exploring the influencing factors associated with fear of cancer recurrence in this population is important for developing effective interventions. This study is to investigate the current status and factors influencing fear of cancer recurrence (FCR) related to malignant bone-tumors in adolescent patients, providing evidence for future targeted mental health support and interventions. DESIGN: A cross-sectional survey. METHODS: In total, 269 adolescent malignant-bone tumor cases were treated at two hospitals in Zhejiang Province, China from January 2023 to December 2023. Patients completed a General Information Questionnaire, Fear of Progression Questionnaire-Short Form (FoP-Q-SF), Family Hardiness Index (FHI), and a Simple Coping Style Questionnaire (SCSQ). Univariate and multivariable logistic regressions analysis were used to assess fear of cancer recurrence. RESULTS: A total of 122 (45.4%) patients experienced FCR (FoP-Q-SF ≥ 34). Logistic regression analysis analyses showed that per capita-monthly family income, tumor stage, communication between the treating physician and the patient, patient's family relationships, family hardiness a positive coping score, and a negative coping score were the main factors influencing FCR in these patients (P < 0.05). CONCLUSIONS: FCR in malignant-bone tumor adolescent patients is profound. Healthcare professionals should develop targeted interventional strategies based on the identified factors, which affect these patients; helping patients increase family hardiness, helping patients to positively adapt, and avoid negative coping styles.


Subject(s)
Adaptation, Psychological , Bone Neoplasms , Fear , Neoplasm Recurrence, Local , Humans , Cross-Sectional Studies , Adolescent , Male , Female , Fear/psychology , Neoplasm Recurrence, Local/psychology , Bone Neoplasms/psychology , China , Surveys and Questionnaires , Child
3.
Opt Express ; 32(11): 19397-19409, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859075

ABSTRACT

Based on the tensor polarization holography theory, we propose a simple and convenient method in the recording material, phenanthrenequinone-doped polymethylmethacrylate, to generate beams on higher and hybrid-order Poincaré spheres, and realize their polarization evolution on the spheres by combining the recorded phase with the Pancharatnam-Berry phase. By simultaneously adjusting the polarization azimuth angle and relative phase of the recorded waves, independent phase-shifts can be imparted onto two orthogonal circular polarization states in reconstruction process of polarization holography. The beams on basic Poincaré sphere are transformed into that on arbitrary higher or hybrid-order Poincaré spheres. We get the Poincaré spheres' type and polarization distribution of the reconstructed wave by interferometry and polarizer, and the results match well with the theoretical predictions.

4.
Small ; : e2402357, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881321

ABSTRACT

2D heterostructuring is a versatile methodology for designing nanoarchitecture catalytic systems that allow for reconstruction and modulation of interfaces and electronic structures. However, catalysts with such structures are extremely scarce due to limited synthetic strategies. Here, a highly ordered 2D Ru/Si/Ru/Si… nano-heterostructures (RSHS) is reported by acid etching of the LaRuSi electride. RSHS shows a superior electrocatalytic activity for hydrogen evolution with an overpotential of 14 mV at 10 mA cm-2 in alkaline media. Both experimental analysis and first-principles calculations demonstrate that the electronic states of Ru can be tuned by strong interactions of the interfacial Ru-Si, leading to an optimized hydrogen adsorption energy. Moreover, due to the synergistic effect of Ru and Si, the energy barrier of water dissociation is significantly reduced. The well-organized superlattice structure will provide a paradigm for construction of efficient catalysts with tunable electronic states and dual active sites.

5.
BMC Pregnancy Childbirth ; 24(1): 393, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807043

ABSTRACT

BACKGROUND: The gonadotropin hormone-releasing hormone agonists (GnRH-a) have been widely used for controlled ovarian stimulation in assisted reproductive technology (ART). The early-follicular long-acting GnRH-a long protocol (EFL) and the luteal phase short-acting GnRH-a long protocol (LPS) are commonly used GnRH agonist protocols. We conducted a retrospective analysis to assess and compare the rates of congenital abnormalities and safety profiles in offspring born from the EFL and LPS protocols. METHODS: We conducted a retrospective cohort study to analyze and compare neonatal data from patients who using EFL or LPS protocols at our center between January 1, 2014, and June 30, 2017. The study ultimately included 1810 neonates from 1401 cycles using the EFL protocol and 2700 neonates from 2129 cycles using the LPS protocol.The main outcome measures are gestational age at delivery, birth weight, and congenital anomaly rate.To assess the influence of various factors on congenital abnormalities, a random-effects logistic regression model was employed. RESULTS: The EFL and LPS protocols led to similar congenital anomaly rates (1.64% vs. 2.35%, P = 0.149). No significant differences were found between the two groups regarding birth weight and its categories, newborn gender and congenital anomaly rate. The results of the multivariate logistic regression model indicated no association between congenital anomaly and BMI, duration of infertility, treatment protocol, fertilization method, or embryo transfer stage. Compared with singleton pregnancies, the probability of congenital defects in multiple pregnancies was 2.64 times higher (OR: 2.64, 95% CI: 1.72-4.05, P < 0.0001). Newborns with congenital defects were born with a lower gestational age compared with full-term pregnancies. CONCLUSION: In conclusion, the EFL protocol is considered a safe option for ensuring offspring safety, comparable with the LPS protocol; however, multiple pregnancies represent an independent risk factor for congenital abnormalities. This approach can be widely adopted; however, prioritizing single embryo transfers is strongly recommended to minimize the potential risks associated with multiple pregnancies in offspring.


Subject(s)
Gonadotropin-Releasing Hormone , Ovulation Induction , Humans , Retrospective Studies , Female , Pregnancy , Gonadotropin-Releasing Hormone/agonists , Ovulation Induction/methods , Infant, Newborn , Adult , Congenital Abnormalities/epidemiology , Luteal Phase/drug effects , Birth Weight , Gestational Age , Male
6.
Plant Physiol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637315

ABSTRACT

Seed deterioration during storage is a major problem in agricultural and forestry production and for germplasm conservation. Our previous studies have shown that a mitochondrial outer membrane protein VOLTAGE-DEPENDENT ANION CHANNEL (VDAC) is involved in programmed cell death (PCD)-like viability loss during the controlled deterioration treatment (CDT) of elm (Ulmus pumila L.) seeds, but its underlying mechanism remains unclear. In this study, we demonstrate that the oxidative modification of GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE (GAPDH) is functioned in the gate regulation of VDAC during the CDT of elm seeds. Through biochemical and cytological methods and observations of transgenic material [Arabidopsis (Arabidopsis thaliana), Nicotiana benthamiana, and yeast (Saccharomyces cerevisiae)], we demonstrate that cysteine S-glutathionylated UpGAPDH1 interacts with UpVDAC3 during seed aging, which leads to a mitochondrial permeability transition and aggravation of cell death, as indicated by the leakage of the mitochondrial pro-apoptotic factor cytochrome c and the emergence of apoptotic nucleus. Physiological assays and inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that GAPDH glutathionylation is mediated by increased glutathione, which might be caused by increases in the concentrations of free metals, especially Zn. Introduction of the Zn-specific chelator TPEN [(N, N, N', N'-Tetrakis (2-pyridylmethyl)ethylenediamine)] significantly delayed seed aging. We conclude that glutathionylated UpGAPDH1 interacts with UpVDAC3 and serves as a pro-apoptotic protein for VDAC-gating regulation and cell death initiation during seed aging.

7.
Parasit Vectors ; 17(1): 111, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448975

ABSTRACT

Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii). The current treatment for toxoplasmosis remains constrained due to the absence of pharmaceutical interventions. Thus, the pursuit of more efficient targets is of great importance. Lipid metabolism in T. gondii, including fatty acid metabolism, phospholipid metabolism, and neutral lipid metabolism, assumes a crucial function in T. gondii because those pathways are largely involved in the formation of the membranous structure and cellular processes such as division, invasion, egress, replication, and apoptosis. The inhibitors of T. gondii's lipid metabolism can directly lead to the disturbance of various lipid component levels and serious destruction of membrane structure, ultimately leading to the death of the parasites. In this review, the specific lipid metabolism pathways, correlative enzymes, and inhibitors of lipid metabolism of T. gondii are elaborated in detail to generate novel ideas for the development of anti-T. gondii drugs that target the parasites' lipid metabolism.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Lipid Metabolism , Apoptosis , Zoonoses , Toxoplasmosis/drug therapy
8.
Chin J Traumatol ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38508908

ABSTRACT

PURPOSE: To comprehensively analyze the geographic and temporal trends of foot fracture, understand its health burden by age, sex, and sociodemographic index (SDI), and explore its leading causes from 1990 to 2019. METHODS: The datasets in the present study were generated from the Global Burden of Diseases Study 2019, which included foot fracture data from 1990 to 2019. We extracted estimates along with the 95% uncertainty interval (UI) for the incidence and years lived with disability (YLDs) of foot fracture by location, age, gender, and cause. The epidemiology and burden of foot fracture at the global, regional, and national level was exhibited. Next, we presented the age and sex patterns of foot fracture. The leading cause of foot fracture was another focus of this study from the viewpoint of age, sex, and location. Then, Pearson's correlations between age-standardized rate (ASR), SDI, and estimated annual percentage change were calculated. RESULTS: The age-standardized incidence rate was 138.68 (95% UI: 104.88 - 182.53) per 100,000 persons for both sexes, 174.24 (95% UI: 134.35 - 222.49) per 100,000 persons for males, and 102.19 (95% UI: 73.28 - 138.00) per 100,000 persons for females in 2019. The age-standardized YLDs rate was 5.91 (95% UI: 3.58 - 9.25) per 100,000 persons for both genders, 7.35 (95% UI: 4.45 - 11.50) per 100,000 persons for males, and 4.51 (95% UI: 2.75 - 7.03) per 100,000 persons for females in 2019. The global incidence and YLDs of foot fracture increased in number and decreased in ASR from 1990 to 2019. The global geographical distribution of foot fracture is uneven. The incidence rate for males peaked at the age group of 20 - 24 years, while that for females increased with advancing age. The incidence rate of older people was rising, as younger age incidence rate declined from 1990 to 2019. Falls, exposure to mechanical forces, and road traffic injuries were the 3 leading causes of foot fracture. Correlations were observed between ASR, estimated annual percentage change, and SDI. CONCLUSIONS: The burden of foot fracture remains high globally, and it poses an enormous public health challenge, with population ageing. It is necessary to allocate more resources to the high-risk populations. Targeted realistic intervention policies and strategies are warranted.

9.
Arch Gynecol Obstet ; 309(5): 2167-2173, 2024 May.
Article in English | MEDLINE | ID: mdl-38503849

ABSTRACT

OBJECTIVE: The purpose of this study is to compare the clinical efficacy of oral dydrogesterone and micronized vaginal progesterone (MVP) gel during the first HRT-FET cycle. METHODS: A retrospective cohort study based on a total of 344 women undergoing their first HRT-FET cycles without Gonadotropin-Releasing Hormone agonist (GnRH-a) pretreatment was conducted. All the cycles were allocated to two groups in the reproductive medical center at the University of Hong Kong-Shenzhen Hospital. One group (n = 193) received oral dydrogesterone 30 mg/d before embryo transfer, while the other group (n = 151) received MVP gel 180 mg/d. RESULTS: The demographics and baseline characteristics of two groups were comparable. We found no statistically significant difference in live birth rate (24.35% vs. 31.13%, P = 0.16), clinical pregnancy rate (34.72% vs. 36.42%, P = 0.74), embryo implantation rate (25.09% vs. 28.36%, P = 0.43), positive pregnancy rate (42.49% vs 38.41%, P = 0.45), miscarriage rate (9.33% vs 3.97%, P = 0.05), or ectopic pregnancy rate (0.52% vs. 0.66%, P = 0.86) between the oral dydrogesterone group and MVP gel group. In the multivariate logistic regression analysis for covariates, medication used for luteal support was not associated with live birth rate (OR = 0.73, 95% CI: 0.32-1.57, P = 0.45). And the different luteal support medication did not have a significant positive association with the live birth rate in the cycles with day 2 embryo transferred (OR = 1.39, 95% CI:0.66-2.39, P = 0.39) and blastocyst transferred (OR = 1.31 95% CI:0.64-2.69, P = 0.46). CONCLUSION: 30 mg/d oral dydrogesterone and 180 mg/d MVP gel revealed similar reproductive outcomes in HRT-FET cycles in the study.


Subject(s)
Dydrogesterone , Progesterone , Pregnancy , Female , Humans , Progesterone/therapeutic use , Retrospective Studies , Pregnancy Rate , Embryo Transfer , Lutein
10.
Angew Chem Int Ed Engl ; 63(11): e202400119, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38268159

ABSTRACT

The water (H2 O) dissociation is critical for various H2 O-associated reactions, including water gas shift, hydrogen evolution reaction and hydrolysis corrosion. While the d-band center concept offers a catalyst design guideline for H2 O activation, it cannot be applied to intermetallic or main group elements-based systems because Coulomb interaction was not considered. Herein, using hydrolysis corrosion of Mg as an example, we illustrate the critical role of the dipole of the intermetallic catalysts for H2 O dissociation. The H2 O dissociation kinetics can be enhanced using Mgx Mey (Me=Co, Ni, Cu, Si and Al) as catalysts, and the hydrogen generation rate of Mg2 Ni-loaded Mg reached 80 times as high as Ni-loaded Mg. The adsorbed H2 O molecules strongly couple with the Mg-Me dipole of Mgx Mey , lowering the H2 O dissociation barrier. The dipole-based H2 O dissociation mechanism is applicable to non-transition metal-based systems, such as Mg2 Si and Mg17 Al12 , offering a flexible catalyst design strategy for controllable H2 O dissociation.

11.
Psychon Bull Rev ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38087065

ABSTRACT

Retaining gaze in working memory (WM) is essential for successfully navigating through the social world. In the current study, we investigated how WM stores gaze direction by focusing on the role of face context in gaze WM. To address this question, we propose two competing hypotheses. The independence hypothesis predicts that eye gaze is stored independently and is not susceptible to the influence of the surrounding face context. Conversely, the embedding hypothesis claims that gaze WM involves face context and that disruption of holistic face processing would also impair memory for embedded gaze. In three experiments, we adopted different manipulations to disrupt holistic face processing and compared WM performance for gaze within and without face context. In Experiments 1 and 2, we tested WM for gaze direction with schematic upright or inverted faces. We found better performance for gaze within upright faces (vs. inverted faces) by increasing the probability of being remembered. In Experiment 3, we replaced schematic faces with photographic faces, and disrupted holistic processing by using scrambled faces. Results replicated our previous findings, showing that photographic gaze within intact faces was better remembered than gaze presented alone or gaze within scrambled faces. These findings indicate that gaze memory is face-dependent and support the embedding hypothesis.

12.
Lupus Sci Med ; 10(2)2023 12 28.
Article in English | MEDLINE | ID: mdl-38154829

ABSTRACT

OBJECTIVE: This study aimed to investigate the clinical significance of exostosin 1 (EXT1) in confirmed and suspected lupus membranous nephropathy (LMN). METHODS: EXT1 was detected in 67 renal tissues of M-type phospholipase A2 receptor (PLA2R)-negative and ANA-positive membranous nephropathy by immunohistochemistry, and cases were divided into confirmed LMN and suspected LMN. The clinicopathological data were compared among the above groups, as well as EXT1-positive group and EXT1-negative group. RESULTS: Twenty-two cases (73.3%) of confirmed LMN and six cases (16.2%) of suspected LMN exhibited EXT1 expression on the glomerular basement membrane and/or mesangium area, showing a significant difference (p<0.001). Concurrently, lupus nephritis (LN) of pure class V demonstrated a lower frequency of EXT1 positivity compared with mixed class V LN in the confirmed LMN group (31.8% vs 68.2%, p=0.007). EXT1-positive patients in the confirmed and suspected LMN group showed significant differences in some clinicopathological data comparing with EXT1-negative patients (p<0.05). Follow-up data revealed that a greater proportion of patients in the EXT1-positive group achieved complete remission post-treatment (p<0.05). Cox regression analysis showed that EXT1 positivity was significantly correlated with complete remission across the entire study cohort (HR 5.647; 95% CI, 1.323 to 12.048; p=0.019). Kaplan-Meier analysis indicated that the EXT1-positive group had a higher rate of accumulated nephrotic remission compared with the EXT1-negative group in the whole study cohort (p=0.028). CONCLUSIONS: The EXT1-positive group exhibited a higher active index and a more favourable renal outcome than the EXT1-negative group. It would be better to recognise suspected LMN with EXT1 positivity as a potential autoimmune disease and maintain close follow-up due to its similarities with confirmed LMN.


Subject(s)
Glomerulonephritis, Membranous , Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Clinical Relevance , Glomerulonephritis, Membranous/diagnosis , Glomerulonephritis, Membranous/drug therapy , Kidney/pathology , Lupus Nephritis/diagnosis , Lupus Nephritis/pathology
13.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941198

ABSTRACT

Accurate real-time estimation of the gait phase (GP) is crucial for many control methods in exoskeletons and prostheses. A class of approaches to GP estimation construct the phase portrait of a segment or joint angle, and use the normalized polar angle of this diagram to estimate the GP. Although several studies have investigated such methods, quantitative information regarding their performance is sparse. In this work, we assess the performance of 3 portrait-based methods in flat and inclined steady walking conditions, using quantitative metrics of accuracy, repeatability and linearity. Two methods use portraits of the hip angle versus angular velocity (AVP), and hip angle versus integral of the angle (IAP). In a novel third method, a linear transformation is applied to the portrait to improve its circularity (CSP). An independent heel-strike (HS) detection algorithm is employed in all algorithms, rather than assuming HSs to occur at a constant point on the portrait. The novel method shows improvements in all metrics, notably significant root-mean-square error reductions compared to IAP (-3%, p < 0.001) and AVP (-2.4%, p < 0.001) in slope, and AVP (-1.61%, p = 0.0015) in flat walking. A non-negligible inter-subject variability is observed between phase angles at HS (equivalent to up to 8.4% of error in the GP), highlighting the importance of explicit HS detection for portrait-based methods.


Subject(s)
Gait , Walking , Humans , Heel , Algorithms , Biomechanical Phenomena
14.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941275

ABSTRACT

The growing demand for online gait phase (GP) estimation, driven by advancements in exoskeletons and prostheses, has prompted numerous approaches in the literature. Some approaches explicitly use time, while others rely on state variables to estimate the GP. In this article, we study two novel GP estimation methods: a State-based Method (SM) which employs the phase portrait of the hip angle (similar to previous methods), but uses a stretching transformation to reduce the nonlinearity of the estimated GP; and a Time-based Method (TM) that utilizes feature recognition on the hip angle signal to update the estimated cadence twice per gait cycle. The methods were tested across various speeds and slopes, encompassing steady and transient walking conditions. The results demonstrated the ability of both methods to estimate the GP in a range of conditions. The TM outperformed the SM, exhibiting a root-mean-squared error below 3% compared to 8.5% for the SM. However, the TM exhibited diminished performance during speed transitions, whereas the SM performed consistently in steady and transient conditions. The SM displayed a better performance in inclined walking and demonstrated higher linearity at faster speeds. Through the assessment of these methods in diverse conditions, this study lays the groundwork for further advancements in GP estimation methods and their application in assistive controllers.


Subject(s)
Exoskeleton Device , Humans , Biomechanical Phenomena , Gait , Walking
15.
Science ; 382(6674): 1056-1065, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033072

ABSTRACT

The development of functionally distinct catalysts for enantioselective synthesis is a prominent yet challenging goal of synthetic chemistry. In this work, we report a family of chiral N-heterocyclic carbene (NHC)-ligated boryl radicals as catalysts that enable catalytic asymmetric radical cycloisomerization reactions. The radical catalysts can be generated from easily prepared NHC-borane complexes, and the broad availability of the chiral NHC component provides substantial benefits for stereochemical control. Mechanistic studies support a catalytic cycle comprising a sequence of boryl radical addition, hydrogen atom transfer, cyclization, and elimination of the boryl radical catalyst, wherein the chiral NHC subunit determines the enantioselectivity of the radical cyclization. This catalysis allows asymmetric construction of valuable chiral heterocyclic products from simple starting materials.

16.
Front Psychol ; 14: 1190620, 2023.
Article in English | MEDLINE | ID: mdl-37881218

ABSTRACT

The increasing need for human-robot interaction requires not only robots to understand how humans think, but also humans to understand robots. Interestingly, little attention has been given to how humans interpret robots' behaviors. In this study, we adopted a social mental rotation task and investigated whether socially engaging behaviors could influence how people take a robot's perspectives. In a real lab, two android robots with neutral appearance sat opposite each other by a table with conflicting perspectives. Before the participant started the experiment, one of the robots behaved more interactively than the other by showing more socially engaging behaviors. Then the participant was required to identify rotated normal or mirrored digits presented inbetween the two robots. Results revealed a significant interactive effect between the digits type (normal; mirrored) and robot type (interactive; noninteractive). When digits were oriented to the interactive robot, we found a larger RT difference between normal and mirrored digits. In general, these findings suggested that robots' interactive behaviors could influence how people spontaneously consider the robot's perspective. Future studies may further consider how interactive behaviors can shape human-robot relationships and facilitate human-robot interaction.

17.
Phys Rev Lett ; 131(14): 140801, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37862656

ABSTRACT

Complementarity is an essential feature of quantum mechanics. The preparation of an eigenstate of one observable implies complete randomness in its complementary observable. In quantum cryptography, complementarity allows us to formulate security analyses in terms of phase-error correction. However, the concept becomes much subtler in the device-independent regime that offers security without device characterization. Security proofs of device-independent quantum cryptography tasks are often complex and quite different from those of their more standard device-dependent cousins. The existing proofs pose huge challenges to experiments, among which large data-size requirement is a crux. Here, we show the complementarity security origin of the device-independent tasks. By linking complementarity with quantum nonlocality, we recast the device-independent scheme into a quantum error correction protocol. Going beyond the identical-and-independent-distribution case, we consider the most general attack. We generalize the sample entropy in classical Shannon theory for the finite-size analysis. Our method exhibits good finite-size performance and brings the device-independent scheme to a more practical regime. Applying it to the data in a recent ion-trap-based device-independent quantum key distribution experiment, one could reduce the requirement on data size to less than a third. Furthermore, the operational meaning of complementarity naturally extends device-independent scenarios to advantage key distillation, easing experiments by tolerating higher loss and lower transmittance.

18.
Nat Commun ; 14(1): 6373, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821432

ABSTRACT

The tunability of reaction pathways is required for exploring efficient and low cost catalysts for ammonia synthesis. There is an obstacle by the limitations arising from scaling relation for this purpose. Here, we demonstrate that the alkali earth imides (AeNH) combined with transition metal (TM = Fe, Co and Ni) catalysts can overcome this difficulty by utilizing functionalities arising from concerted role of active defects on the support surface and loaded transition metals. These catalysts enable ammonia production through multiple reaction pathways. The reaction rate of Co/SrNH is as high as 1686.7 mmol·gCo-1·h-1 and the TOFs reaches above 500 h-1 at 400 °C and 0.9 MPa, outperforming other reported Co-based catalysts as well as the benchmark Cs-Ru/MgO catalyst and industrial wüstite-based Fe catalyst under the same reaction conditions. Experimental and theoretical results show that the synergistic effect of nitrogen affinity of 3d TMs and in-situ formed NH2- vacancy of alkali earth imides regulate the reaction pathways of the ammonia production, resulting in distinct catalytic performance different from 3d TMs. It was thus demonstrated that the appropriate combination of metal and support is essential for controlling the reaction pathway and realizing highly active and low cost catalysts for ammonia synthesis.

20.
Sci Adv ; 9(38): eadh9104, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37738353

ABSTRACT

Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.

SELECTION OF CITATIONS
SEARCH DETAIL
...