Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(6): 6707-6714, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32437131

ABSTRACT

Realizing multiple functions and sustainable manufacturing within the same electronic device would be highly attractive from a design and fabrication perspective. Here we demonstrate a recyclable dual-mode thin-film device that can perform both light emission and heat management simultaneously. The device is composed of a dissolvable emitting layer sandwiched between two undissolvable conducting films. The vertical multilayered device enables a highly flexible and foldable multicolor electroluminescent emission ranging from yellow or blue to white, and the coplanar monolayered conductor achieves tunable Joule heat temperature setting. By utilizing selective dissolution and artificial reconstruction of each layered component, the parent device shows full recyclability and reconstructability without severe performance degradation after several recycles. The proof-of concept device provides an ideal strategy to construct a multifunctional film system with recyclability and makes a significant contribution to scientific and technological advancement in low-cost sustainable electronics and optoelectronics.

2.
ACS Nano ; 14(4): 3876-3884, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32186191

ABSTRACT

In the past decades, various alternating current electroluminescent (ACEL) devices, especially the flexible ones, have been developed and used in flat panel display, large-scale decorating, logo display lighting, optical signaling, etc. Transparent plastics are usually used as substrates in ACEL devices; however, they are undegradable and may cause serious environmental pollution. Herein, we have developed a flexible transient ACEL device based on transparent fish gelatin (FG) films. The FG films were made from fish scales, which are sustainable, cost-efficient, and eco-friendly. These films could dissolve in water within seconds at 60 °C and degrade completely within 24 days in soil. The transmittance of these FG films was up to 91.1% in the visible spectrum, comparable to that of polyethylene terephthalate (PET) (90.4%). After forming a composite with silver nanowires (Ag NWs), the Ag NWs-FG film showed a transmittance up to 82.3% and a sheet resistance down to 22.4 Ω sq-1. The fabricated ACEL device based on the Ag NWs-FG film exhibited high flexibility and luminance up to 56.0 cd m-2. The device could be dissolved in water within 3 min. Our work demonstrates that the sustainable, flexible, and transparent FG films are a promising alternative for green and degradable substrates in the field of flexible electronics, including foldable displays, wearable devices, and health monitoring.


Subject(s)
Gelatin , Nanowires , Animals , Electronics , Fishes , Silver
3.
Nanoscale ; 12(2): 524-529, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31845941

ABSTRACT

Carbon dots (C-dots) are promising and widely applied carbon fluorescent materials for next-generation white light-emitting diodes (WLEDs). However, nonnegligible thermal quenching issues induced by high working temperature of high-power WLEDs severely limit the further development of C-dot phosphors. In this paper, we report an efficient strategy to improve thermal dissipation within C-dot phosphors to solve the thermal quenching problem. C-dots/hexagonal boron nitride nanosheet (BNNS) hybrid nanostructures have been firstly prepared through an electrostatic assembly method. Owing to the effective heat transfer channels established by C-dots/BNNS in a polymer matrix, heat could be dissipated efficiently and the working temperature of WLEDs is reduced by 29 °C, suggesting excellent thermal quenching-resistance properties. Particularly, the hybrids show thermally stable emission without obvious emission loss up to 100 °C. Moreover, the C-dots/BNNS-WLEDs still maintain a high color rendering index of Ra > 89, revealing that the present strategy could promote the exploration of carbon phosphors with thermal quenching resistance for high-quality LED applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...