Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Phys Rev Lett ; 132(18): 180801, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38759167

ABSTRACT

We report new experimental results on exotic spin-spin-velocity-dependent interactions between electron spins. We designed an elaborate setup that is equipped with two nitrogen-vacancy (NV) ensembles in diamonds. One of the NV ensembles serves as the spin source, while the other functions as the spin sensor. By coherently manipulating the quantum states of two NV ensembles and their relative velocity at the micrometer scale, we are able to scrutinize exotic spin-spin-velocity-dependent interactions at short force ranges. For a T-violating interaction, V_{6}, new limits on the corresponding coupling coefficient, f_{6}, have been established for the force range shorter than 1 cm. For a P,T-violating interaction, V_{14}, new constraints on the corresponding coupling coefficient, f_{14}, have been obtained for the force range shorter than 1 km.

2.
J Biomed Res ; : 1-15, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807412

ABSTRACT

This research aims to utilize multivariate logistic regression to explore associations between the frequency of 13 food groups intake (or four diet groups) and infectious diseases. 487849 participants from the UK Biobank were enrolled, and 75209 participants were diagnosed with infectious diseases. Participants reporting the highest intake frequency of processed meat [odds ratio ( OR) = 1.0964; 95% CI: 1.0622-1.1318] and red meat ( OR = 1.0895; 95% CI: 1.0563-1.1239) had a higher risk of infectious diseases compared to those with the lowest intake frequency. Consuming fish 2.0-2.9 times ( OR = 0.8221; 95% CI: 0.7955-0.8496), cheese ≥5.0 times ( OR = 0.8822; 95% CI: 0.8559-0.9092), fruit 3.0-3.9 servings ( OR = 0.8867; 95% CI: 0.8661-0.9078), and vegetables 2.0-2.9 servings ( OR = 0.9372; 95% CI: 0.9189-0.9559) per week were associated with a lower risk of infection. Low meat-eaters ( OR = 0.9404; 95% CI: 0.9243-0.9567), fish-eaters ( OR = 0.8391; 95% CI: 0.7887-0.8919), and vegetarians ( OR = 0.9154; 95% CI: 0.8561-0.9778) had a lower risk of infectious diseases compared to regular meat-eaters. Mediation analysis was performed, revealing glycosylated hemoglobin, white blood cell counts, and body mass index were mediators in the relationships between diet groups and infectious diseases. This study suggested that intake frequency of food groups is a factor in infectious diseases and fish-eaters have a lower risk of infection.

3.
J Glob Health ; 14: 04077, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38638097

ABSTRACT

Background: The current study uniquely focuses on the global incidence and temporal trends of acute hepatitis C (AHC) and hepatitis C virus (HCV)-related cirrhosis among women of reproductive age (15-49 years) from 1990-2019. The risk of vertical transmission and adverse perinatal outcomes associated with HCV infection underscores the importance of prioritising these women in HCV prevention efforts. Methods: Leveraging the Global Burden of Disease 2019 data, we calculated age-standardised incidence rates (ASIR) and assessed temporal trends via the average annual percent change from joinpoint regression. The age-period-cohort model was employed to understand further the effects of age, period, and birth cohort. Results: Over the 30 years, global incidences of AHC and HCV-related cirrhosis in reproductive-age women increased by 46.45 and 72.74%, respectively. The ASIR of AHC was highest in low sociodemographic index regions but showed a declining trend. Conversely, the ASIR of HCV-related cirrhosis displayed unfavourable trends in low, low-middle, and high sociodemographic index regions. Special attention is necessary for sub-Saharan Africa, high-income North America, Eastern Europe, and Central Asia due to their high incidence rates or increasing trends of AHC and HCV-related cirrhosis. Notably, the age-period-cohort model suggests a recent resurgence in AHC and HCV-related cirrhosis risk. Conclusions: The current study is the first to thoroughly evaluate the trends of AHC and HCV-related cirrhosis among reproductive-age women, shedding light on previously unexplored aspects of HCV epidemiology. Our findings identify critical areas where health care systems must adapt to the changing dynamics of HCV infection. The detailed stratification by region and nation further enables the development of localised prevention and treatment strategies.


Subject(s)
Hepacivirus , Hepatitis C , Pregnancy , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Global Burden of Disease , Hepatitis C/complications , Hepatitis C/epidemiology , Liver Cirrhosis/epidemiology , Liver Cirrhosis/etiology , Incidence , Global Health
4.
BMC Infect Dis ; 24(1): 431, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654203

ABSTRACT

BACKGROUND: Vaccination is effective in preventing viral respiratory infectious diseases through protective antibodies and the gut microbiome has been proven to regulate human immunity. This study explores the causal correlations between gut microbial features and serum-specific antiviral immunoglobulin G (IgG) levels. METHODS: We conduct a two-sample bidirectional Mendelian randomization (MR) analysis using genome-wide association study (GWAS) summary data to explore the causal relationships between 412 gut microbial features and four antiviral IgG (for influenza A, measles, rubella, and mumps) levels. To make the results more reliable, we used four robust methods and performed comprehensive sensitivity analyses. RESULTS: The MR analyses revealed 26, 13, 20, and 18 causal associations of the gut microbial features influencing four IgG levels separately. ​Interestingly, ten microbial features, like genus Collinsella, species Bifidobacterium longum, and the biosynthesis of L-alanine have shown the capacity to regulate multiple IgG levels with consistent direction (rise or fall). The ​reverse MR analysis suggested several potential causal associations of IgG levels affecting microbial features. CONCLUSIONS: The human immune response against viral respiratory infectious diseases could be modulated by changing the abundance of gut microbes, which provided new approaches for the intervention of viral respiratory infections.


Subject(s)
Gastrointestinal Microbiome , Immunoglobulin G , Mendelian Randomization Analysis , Respiratory Tract Infections , Humans , Immunoglobulin G/blood , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/microbiology , Genome-Wide Association Study , Antibodies, Viral/blood , Antibodies, Viral/immunology , Vaccination , Virus Diseases/immunology , Virus Diseases/prevention & control
5.
Opt Lett ; 49(5): 1289-1292, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426995

ABSTRACT

Spatial-spectral interferometry (SSI) is a technique used to reconstruct the electrical field of an ultrafast laser. By analyzing the spectral phase distribution, SSI provides valuable information about the optical dispersion affecting the spectral phase, which is related to the energy distribution of the laser pulses. SSI is a single-shot measurement process and has a low laser power requirement. However, the reconstruction algorithm involves numerous Fourier transform and filtering operations, which limits the applicability of SSI for real-time dispersion analysis. To address this issue, this Letter proposes a field-programmable gate array (FPGA)-based deep neural network to accelerate the spectral phase reconstruction and dispersion estimation process. The results show that the analysis time is improved from 124 to 9.27 ms, which represents a 13.4-fold improvement on the standard Fourier transform-based reconstruction algorithm.

6.
Front Cell Infect Microbiol ; 14: 1243586, 2024.
Article in English | MEDLINE | ID: mdl-38384303

ABSTRACT

Introduction: Vaccination is still the primary means for preventing influenza virus infection, but the protective effects vary greatly among individuals. Identifying individuals at risk of low response to influenza vaccination is important. This study aimed to explore improved strategies for constructing predictive models of influenza vaccine response using gene expression data. Methods: We first used gene expression and immune response data from the Immune Signatures Data Resource (IS2) to define influenza vaccine response-related transcriptional expression and alteration features at different time points across vaccination via differential expression analysis. Then, we mapped these features to single-cell resolution using additional published single-cell data to investigate the possible mechanism. Finally, we explored the potential of these identified transcriptional features in predicting influenza vaccine response. We used several modeling strategies and also attempted to leverage the information from single-cell RNA sequencing (scRNA-seq) data to optimize the predictive models. Results: The results showed that models based on genes showing differential expression (DEGs) or fold change (DFGs) at day 7 post-vaccination performed the best in internal validation, while models based on DFGs had a better performance in external validation than those based on DEGs. In addition, incorporating baseline predictors could improve the performance of models based on days 1-3, while the model based on the expression profile of plasma cells deconvoluted from the model that used DEGs at day 7 as predictors showed an improved performance in external validation. Conclusion: Our study emphasizes the value of using combination modeling strategy and leveraging information from single-cell levels in constructing influenza vaccine response predictive models.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Humans , Influenza Vaccines/genetics , Vaccination , Antibodies, Viral
7.
J Am Chem Soc ; 146(8): 5502-5510, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38359445

ABSTRACT

Glycoproteins account for numerous biological processes including those associated with diseases and infections. The advancement of glycopeptides has emerged as a promising strategy for unraveling biological pathways and discovering novel medicines. In this arena, a key challenge arises from the absence of efficient synthetic strategies to access glycopeptides and glycoproteins. Here, we present a highly concise approach to bridging saccharides with amino acids and peptides through an amide linkage. Our amide-linked C-glycosyl amino acids and peptides are synthesized through cooperative Ni-catalyzed and photoredox processes. The catalytic process generates a glycosyl radical and an amide carbonyl radical, which subsequently combine to yield the C-glycosyl products. The saccharide reaction partners encompass mono-, di-, and trisaccharides. All 20 natural amino acids, peptides, and their derivatives can efficiently undergo glycosylations with yields ranging from acceptable to high, demonstrating excellent stereoselectivities. As a substantial expansion of applications, we have shown that simple C-glycosyl amino acids can function as versatile building units for constructing C-glycopeptides with intricate spatial complexities.


Subject(s)
Amides , Amino Acids , Nickel/chemistry , Peptides , Carbohydrates/chemistry , Glycopeptides , Glycoproteins , Catalysis
8.
Nat Nanotechnol ; 19(2): 160-165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225359

ABSTRACT

Exceptional points (EPs) are singularities in non-Hermitian systems, where k (k ≥ 2) eigenvalues and eigenstates coalesce. High-order EPs exhibit richer topological characteristics and better sensing performance than second-order EPs. Theory predicts even richer non-Hermitian topological phases for high-order EP geometries, such as lines or rings formed entirely by high-order EPs. However, experimental exploration of high-order EP geometries has hitherto proved difficult due to the demand for more degrees of freedom in the Hamiltonian's parameter space or a higher level of symmetries. Here we observe a third-order exceptional line in an atomic-scale system. To this end, we use a nitrogen-vacancy spin in diamond and introduce multiple symmetries in the non-Hermitian Hamiltonian realized with the system. Furthermore, we show that the symmetries play an essential role in the occurrence of high-order EP geometries. Our approach can in future be further applied to explore high-order EP-related topological physics at the atomic scale and, potentially, for applications of high-order EPs in quantum technologies.

9.
Brief Funct Genomics ; 23(2): 110-117, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-37340787

ABSTRACT

With the global pandemic of COVID-19, the research on influenza virus has entered a new stage, but it is difficult to elucidate the pathogenesis of influenza disease. Genome-wide association studies (GWASs) have greatly shed light on the role of host genetic background in influenza pathogenesis and prognosis, whereas single-cell RNA sequencing (scRNA-seq) has enabled unprecedented resolution of cellular diversity and in vivo following influenza disease. Here, we performed a comprehensive analysis of influenza GWAS and scRNA-seq data to reveal cell types associated with influenza disease and provide clues to understanding pathogenesis. We downloaded two GWAS summary data, two scRNA-seq data on influenza disease. After defining cell types for each scRNA-seq data, we used RolyPoly and LDSC-cts to integrate GWAS and scRNA-seq. Furthermore, we analyzed scRNA-seq data from the peripheral blood mononuclear cells (PBMCs) of a healthy population to validate and compare our results. After processing the scRNA-seq data, we obtained approximately 70 000 cells and identified up to 13 cell types. For the European population analysis, we determined an association between neutrophils and influenza disease. For the East Asian population analysis, we identified an association between monocytes and influenza disease. In addition, we also identified monocytes as a significantly related cell type in a dataset of healthy human PBMCs. In this comprehensive analysis, we identified neutrophils and monocytes as influenza disease-associated cell types. More attention and validation should be given in future studies.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Gene Expression Profiling/methods , Genome-Wide Association Study , Leukocytes, Mononuclear , Influenza, Human/genetics , COVID-19/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
10.
J Hazard Mater ; 465: 133137, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38056265

ABSTRACT

This study investigated the interaction between the co-pollutants of Benzo[a]pyrene (BaP) and decabromodiphenyl ether (BDE-209) and the bacterial community in soil under flooding anaerobic condition. Three levels of combined pollution (at nominal concentrations of 1, 5, and 25 mg/kg, respectively, for each pollutant), their corresponding sterilized controls, and a blank control (CK) were set up. During the incubation time of 270 days, BaP attenuated more easily than BDE-209. The second-order rate constant of BaP attenuation was negatively correlated with the Ln value of initial BaP concentration. Maximal difference in bacterial community occurred between the CK soil and the highly polluted soil. Desulfomonilaceae, Parcubacteria and Rhodanobacter were probably involved in BaP and BDE-209 degradation, while Nitrosomonadaceae, Phenylobacterium and Mitochondria were significantly suppressed by BaP and BDE-209 or their degrading products. Genes narI, bcrC, fadJ, had, dmpC, narG and CfrA were involved in the degradation of BaP and BDE-209. Impacts of BaP and BDE-209 on metabolisms of carbon, nitrogen and sulfur were not significant. The results provide guidance for the management and remediation of the contaminated soil.


Subject(s)
Environmental Pollutants , Halogenated Diphenyl Ethers , Soil Pollutants , Benzo(a)pyrene/metabolism , Soil Pollutants/metabolism , Soil , Anaerobiosis , Environmental Pollutants/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Soil Microbiology
11.
Natl Sci Rev ; 10(12): nwad100, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37954192

ABSTRACT

High-sensitivity detection of the microscopic magnetic field is essential in many fields. Good sensitivity and high spatial resolution are mutually contradictory in measurement, which is quantified by the energy resolution limit. Here we report that a sensitivity of 0.5 nT/[Formula: see text] at the nanoscale is achieved experimentally by using nitrogen-vacancy defects in diamond with depths of tens of nanometers. The achieved sensitivity is substantially enhanced by integrating with multiple quantum techniques, including real-time-feedback initialization, dynamical decoupling with shaped pulses and repetitive readout via quantum logic. Our magnetic sensors will shed new light on searching new physics beyond the standard model, investigating microscopic magnetic phenomena in condensed matters, and detection of life activities at the sub-cellular scale.

12.
J Neural Eng ; 20(5)2023 09 26.
Article in English | MEDLINE | ID: mdl-37703869

ABSTRACT

Background. Electrical neuromodulation therapies commonly utilize high-frequency stimulations (HFS) of biphasic-pulses to treat neurological disorders. The biphasic pulse consists of a leading cathodic-phase to activate neurons and a lagging anodic-phase to balance electrical charges. Because both monophasic cathodic- and anodic-pulses can depolarize neuronal membranes, splitting biphasic-pulses into alternate cathodic- and anodic-pulses could be a feasible strategy to improve stimulation efficiency.Objective. We speculated that neurons in the volume initially activated by both polarity pulses could change to be activated only by anodic-pulses during sustained HFS of alternate monophasic-pulses. To verify the hypothesis, we investigated the interactions of the monophasic pulses during HFS and revealed possible underlying mechanisms.Approach. Different types of pulse stimulations were applied at the alvear fibers (i.e. the axons of CA1 pyramidal neurons) to antidromically activate the neuronal cell bodies in the hippocampal CA1 region of anesthetized ratsin-vivo. Sequences of antidromic HFS (A-HFS) were applied with alternate monophasic-pulses or biphasic-pulses. The pulse frequency in the A-HFS sequences was 50 or 100 Hz. The A-HFS duration was 120 s. The amplitude of antidromically-evoked population spike was measured to evaluate the neuronal firing induced by each pulse. A computational model of axon was used to explore the possible mechanisms of neuronal modulations. The changes of model variables during sustained A-HFS were analyzed.Main results. In rat experiments, with a same pulse intensity, the activation volume of a cathodic-pulse was greater than that of an anodic-pulse. In paired-pulse tests, a preceding cathodic-pulse was able to prevent a following anodic-pulse from activating neurons due to refractory period. This indicated that the activation volume of a cathodic-pulse covered that of an anodic-pulse. However, during sustained A-HFS of alternate monophasic-pulses, the anodic-pulses were able to prevail over the cathodic-pulses in activating neurons in the overlapped activation volume. Model simulation results show the mechanisms of the activation failures of cathodic-pulses. They include the excessive membrane depolarization caused by an accumulation of potassium ions, the obstacle of hyperpolarization in the conduction pathway and the interactions from anodic-pulses.Significance. The study firstly showed the domination of anodic-pulses over cathodic-pulses in their competitions to activate neurons during sustained HFS. The finding provides new clues for designing HFS paradigms to improve the efficiency of neuromodulation therapies.


Subject(s)
Axons , Neurons , Animals , Rats , Electrodes , CA1 Region, Hippocampal , Computer Simulation
13.
Front Med (Lausanne) ; 10: 1241824, 2023.
Article in English | MEDLINE | ID: mdl-37692774

ABSTRACT

Purpose: The study aimed to assess the accuracy of the FY-L formula in calculating intraocular lens (IOL) power after small-incision lenticule extraction (SMILE). Methods: For the post-SMILE IOL calculation of the same eye, the IOL power targeting the pre-SMILE eyes' lowest myopic refractive error was used. The FY-L formula, the Emmetropia Verifying Optical Formula (EVO-L), the Barrett True-K no history, and the Shammas-L, respectively, were used to calculate the predicted refractive error of target IOL power. A comparison was made between the change in spherical equivalent induced by SMILE (SMILE-Dif) and the variance between IOL-Dif (IOL-Induced Refractive Error) before and after SMILE. The prediction error (PE) was defined as SMILE-Dif minus IOL-Dif. The proportion of eyes with PEs within ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 D, the numerical and absolute prediction errors (PEs and AEs), and the median absolute error (MedAE) were compared. Results: In total, 80 eyes from 42 patients who underwent SMILE were included in the study. The FY-L formula generated the sample's lowest mean PE (0.06 ± 0.76 D), MAE (0.58 ± 0.50 D), and MedAE (0.47 D), respectively. The PEs in ±0.25 D, ±0.50 D, ±0.75 D, and ±1.00 D comprised 28.8%, 46.3%, 70.0%, and 87.5%, respectively, for the FY-L formula. Compared to other formulas, the FY-L formula produced the highest value with PEs for the percentage of eyes in ±0.50 D, ±0.75 D, and ±1.00 D. Conclusion: This study demonstrates that the FY-L formula provides satisfactory outcomes in estimating the IOL power in the eyes after SMILE.

14.
Sci Total Environ ; 897: 166272, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37595917

ABSTRACT

Bast fiber textiles have become increasingly popular as a sustainable alternative in recent years. Although the carbon emissions of bast fiber textiles have been studied using life cycle assessment method, there is a lack of comprehensive literature analyzing and summarizing the results. This study reviews the current state of research on the carbon emissions of bast fiber textiles. Compared to other plant fibers, there are fewer studies on the carbon footprint or life cycle assessment of bast fiber textiles, and these studies lack a comprehensive "cradle to grave" or "gate to grave" analysis. In addition, inconsistencies exist in the allocation methods used for carbon footprint assessments. This study suggests a combination of physical and economic allocation to conduct a more accurate environmental impact assessment of bast fiber textiles. On the basis of the above review, this study modularizes the process of the entire life cycle of textiles and analyzes the carbon sequestration and emission characteristics to determine the main considerations for carbon footprint assessment. The carbon sequestration effect of bast fiber textiles should be analyzed at the raw material extraction stage and at the end-of-life stage. Oxygen release and consumption are also considered as additional factors to be quantified and analyzed in this study. In the future, the modular method should be used for all carbon footprint evaluation reports for bast fiber textiles. This method helps to comprehensively quantify and evaluate the carbon footprint of bast fiber textiles throughout their entire life cycle. It can provide recommendations for green design, green production and sustainable consumption.

15.
Natl Sci Rev ; 10(7): nwac262, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266553

ABSTRACT

Laboratory search of exotic interactions is crucial for exploring physics beyond the standard model. We report new experimental constraints on two exotic spin-dependent interactions at the micrometer scale based on ensembles of nitrogen-vacancy (NV) centers in diamond. A thin layer of NV electronic spin ensembles is synthesized as the solid-state spin quantum sensor, and a lead sphere is taken as the interacting nucleon source. Our result establishes new bounds for two types of exotic spin interactions at the micrometer scale. For an exotic parity-odd spin- and velocity-dependent interaction, improved bounds are set within the force range from 5 to 500 µm. The upper limit of the corresponding coupling constant [Formula: see text] at 330 µm is more than 1000-fold more stringent than the previous constraint. For the P, T-violating scalar-pseudoscalar nucleon-electron interaction, improved constraints are established within the force range from 6 to 45 µm. The limit of the corresponding coupling constant [Formula: see text] is improved by more than one order of magnitude at 30 µm. This work demonstrates that a solid-state NV ensemble can be a powerful platform for probing exotic spin-dependent interactions.

16.
J Cataract Refract Surg ; 49(9): 912-916, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37350761

ABSTRACT

PURPOSE: To evaluate the visualization performance of different approaches, including the 3D visualization system with coaxial illumination and the 3D system or microscope with standard illumination. SETTING: Fuzhou Eye Hospital, Fuzhou City, China. DESIGN: Cross-sectional study. METHODS: This 2-part performance assessment for visualization composed of an objective analysis using surgical video images and a subjective survey collecting feedback from surgeons. Data of each eye were obtained with 3 approaches: standard operating microscope with standard illumination (SOM-S), 3D visualization system with standard illumination (3D-S), and 3D visualization system with coaxial illumination (3D-C). RESULTS: 112 eyes (107 cases) and 6 cataract surgeons were involved. The red reflex value was markedly greater in the 3D-C approach compared with other 2 approaches ( P < .001). Compared with the SOM-S approach, the red reflex increased by 55%, 57%, and 53% in the 3D-C approach, corresponding to nuclear grades of II, III, and IV, respectively. In the questionnaire survey, red reflex scores were consistently significantly higher in the 3D-C approach than those in the others ( P < .001). Depth of field was enhanced in both 3D approaches compared with the SOM-S approach ( P < .05). The only minor advantage of the SOM system over the 3D-C approach was in the surrounding field clarity score, and the difference was not statistically significant ( P = 1.000). CONCLUSIONS: The 3D-C approach significantly increased the red reflex in both objective and subjective assessments. Surgeon responses also showed a superior performance for the 3D-C approach.


Subject(s)
Cataract Extraction , Cataract , Humans , Lighting , Imaging, Three-Dimensional/methods , Cross-Sectional Studies
17.
Langmuir ; 39(22): 7891-7900, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37218952

ABSTRACT

As a functional textile, the directional water transport textile has been widely used in daily life due to the ability of excellent moisture absorption and quick drying. However, it is still a great challenge to construct a textile that ensures water to transport rapidly from the skin to the outer environment (positive direction) and prevents the skin from being rewetted effectively in the reverse direction. Herein, this study aims to improve the ability of the hydrophobic layer in moisture management using melt electrowriting (MEW) to fabricate gradient pore structures precisely. The pore sizes in different layers can be tailored by altering the collector speed, and thus, the configuration of the pore structure dominates the process of water transportation. The unique multilayered structure achieves the directional water transport effects by improving the permeability with large pores and hindering the transport with small pores in the reverse direction. Meanwhile, we use solution electrospinning (SE) technology to fabricate the hydrophilic layer. The constructed composite membranes exhibit excellent performance with a one-way transport index R up to 1281% and a desired overall moisture management capacity (OMMC) of 0.87. This research outlines an approach to fabricating Janus membranes to enhance its directional water transport performance, facilitating the MEW technique to be applied on the more expanded field for directional water transport textiles.

18.
J Hazard Mater ; 452: 131332, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37004442

ABSTRACT

Development of efficient absorbent materials for detection and treatment of offshore oil spillages remained a challenge. In this work, C-shaped polypropylene oil-absorbent fibers with sub-micron internal pores were prepared by combining spun-bonding technique and thermally induced phase separation (TIPS). The effect of drawing speed on the phase separation and the porous morphology of the shaped fiber non-woven fabric (NWF) was investigated. C-shaped NWF with porous morphology had large water contact angle, higher porosity, larger specific surface area, and increased oil absorption speed and capacity. An online oil spillage detection system was developed using porous C-shaped NWF and an oxygen sensing probe, showing shorter response time and higher signal-to-noise (STN) ratio. The response time for detecting the spillage of soybean oil and diluted crude oil (0.5 mL/0.8 L) in water were only 24 s and 10 s, respectively. The reliable oil detection low detection limit (RLDL) of the oxygen sensing probe was reduced 173 times (from 36.5 g/L to 0.21 g/L) when combined with C-shaped porous fiber NWF.

19.
Sci Total Environ ; 883: 163659, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37100147

ABSTRACT

The production of cotton textiles involves cotton cultivation, ginning, spinning, weaving, knitting, dyeing, finishing, cutting and sewing. It consumes large quantities of freshwater, energy and chemicals, causing serious environmental impacts. The environmental impacts of cotton textiles have been studied extensively through various methods. However, little literature comprehensively summarizes current status of researches on environmental impact of cotton clothing comprehensively and identifies common problems to further study. To fill this gap, this study collates published results on the environmental performance of cotton clothing based on different environmental impact assessment methods, i.e., life cycle assessment, carbon footprint, and water footprint. Apart from the environmental impact results, this study also discusses the key issues when assessing the environmental impact of cotton textiles, such as data collection, carbon storage, allocation methods, and the environment benefits brought by recycling. In the production process of cotton textile products, there will be other co-products with economic value so that the environmental impact should be allocated. The economic allocation method is the most widely used method in the existing researches. In the future, considerable efforts are required to construct the accounting modules which consist of multiple modules, each representing a production process of cotton clothing and including an inventory of inputs under that process, such as cotton cultivation (water, fertilizer, pesticides), and spinning (electricity). It can ultimately be used to flexibly invoke one or more modules to calculate the environmental impact of cotton textiles. Moreover, returning carbonized cotton straw to the field can retain about 50 % of carbon, thus having a certain potential for carbon sequestration.

20.
Front Genet ; 14: 1164274, 2023.
Article in English | MEDLINE | ID: mdl-37020999

ABSTRACT

Objective: We explore the candidate susceptibility genes for influenza A virus (IAV), measles, rubella, and mumps and their underlying biological mechanisms. Methods: We downloaded the genome-wide association study summary data of four virus-specific immunoglobulin G (IgG) level data sets (anti-IAV IgG, anti-measles IgG, anti-rubella IgG, and anti-mumps virus IgG levels) and integrated them with reference models of three potential tissues from the Genotype-Tissue Expression (GTEx) project, namely, whole blood, lung, and transformed fibroblast cells, to identify genes whose expression is predicted to be associated with IAV, measles, mumps, and rubella. Results: We identified 19 significant genes (ULK4, AC010132.11, SURF1, NIPAL2, TRAP1, TAF1C, AC000078.5, RP4-639F20.1, RMDN2, ATP1B3, SRSF12, RP11-477D19.2, TFB1M, XXyac-YX65C7_A.2, TAF1C, PCGF2, and BNIP1) associated with IAV at a Bonferroni-corrected threshold of p < 0.05; 14 significant genes (SOAT1, COLGALT2, AC021860.1, HCG11, METTL21B, MRPL10, GSTM4, PAQR6, RP11-617D20.1, SNX8, METTL21B, ANKRD27, CBWD2, and TSFM) associated with measles at a Bonferroni-corrected threshold of p < 0.05; 15 significant genes (MTOR, LAMC1, TRIM38, U91328.21, POLR2J, SCRN2, Smpd4, UBN1, CNTROB, SCRN2, HOXB-AS1, SLC14A1, AC007566.10, AC093668.2, and CPD) associated with mumps at a Bonferroni-corrected threshold of p < 0.05; and 13 significant genes (JAGN1, RRP12, RP11-452K12.7, CASP7, AP3S2, IL17RC, FAM86HP, AMACR, RRP12, PPP2R1B, C11orf1, DLAT, and TMEM117) associated with rubella at a Bonferroni-corrected threshold of p < 0.05. Conclusions: We have identified several candidate genes for IAV, measles, mumps, and rubella in multiple tissues. Our research may further our understanding of the pathogenesis of infectious respiratory diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...