Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Adv ; 163: 213951, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38986317

ABSTRACT

Photothermal therapy (PTT) of tumor would ineluctably cause oxidative stress and related inflammation in adjacent normal tissues, leading to a discounted therapeutic outcome. To address this issue, herein an innovative therapeutic strategy that integrates photothermal anticancer and normal cell protection is developed. A new type of nitrogen-doped carbon dot (ET-CD) has been synthesized in one step by hydrothermal method using ellagic acid and L-tyrosine as reaction precursors. The as-prepared ET-CD exhibits high photothermal conversion efficiency and good photothermal stability. After intravenous injection, ET-CD can accumulate at the tumor site and the hyperthermia generated under near infrared laser irradiation effectively ablates tumor tissues, thereby significantly inhibiting tumor growth. Importantly, owing to the inherited antioxidant activity from ellagic acid, ET-CD can remove reactive oxygen and nitrogen species produced in the body and reduce the levels of inflammatory factors induced by oxidative stress, so as to alleviate the damage caused by heat-induced inflammation to normal cells and tissues while photothermal anticancer. These attractive features of ET-CD may open the exploration of innovative therapeutic strategies to promote the clinical application of PTT.

2.
Biomater Sci ; 12(9): 2341-2355, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38497292

ABSTRACT

Recently, gas therapy has emerged as a promising alternative treatment for deep-seated tumors. However, some challenges regarding insufficient or uncontrolled gas generation as well as unclear therapeutic mechanisms restrict its further clinical application. Herein, a well-designed nanoreactor based on intracellular glutathione (GSH)-triggered generation of sulfur dioxide (SO2) gas to augment oxidative stress has been developed for synergistic chemodynamic therapy (CDT)/sonodynamic therapy (SDT)/SO2 gas therapy. The nanoreactor (designed as CCM@FH-DNs) is constructed by employing iron-doped hollow mesoporous silica nanoparticles as carriers, the surface of which was modified with the SO2 prodrug 2,4-dinitrobenzenesulfonyl (DNs) and further coated with cancer cell membranes for homologous targeting. The CCM@FH-DNs can not only serve as a Fenton-like agent for CDT, but also as a sonosensitizer for SDT. Importantly, CCM@FH-DNs can release SO2 for SO2-mediated gas therapy. Both in vitro and in vivo evaluations demonstrate that the CCM@FH-DNs nanoreactor performs well in augmenting oxidative stress for SO2 gas therapy-enhanced CDT/SDT via GSH depletion and glutathione peroxidase-4 enzyme deactivation as well as superoxide dismutase inhibition. Moreover, the doped iron ions ensure that the CCM@FH-DNs nanoreactors enable magnetic resonance imaging-guided therapy. Such a GSH-triggered SO2 gas therapy-enhanced CDT/SDT strategy provides an intelligent paradigm for developing efficient tumor microenvironment-responsive treatments.


Subject(s)
Glutathione , Oxidative Stress , Sulfur Dioxide , Oxidative Stress/drug effects , Glutathione/metabolism , Glutathione/chemistry , Sulfur Dioxide/chemistry , Sulfur Dioxide/pharmacology , Humans , Animals , Mice , Nanoparticles/chemistry , Ultrasonic Therapy , Mice, Inbred BALB C , Silicon Dioxide/chemistry , Cell Line, Tumor , Female
3.
Nanoscale ; 15(22): 9652-9662, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37204249

ABSTRACT

The ingenious combination of nano-enzymes with multi-enzyme activities and therapeutic drugs that can promote reactive oxygen species (ROS) production in cancer cells will enhance the therapeutic efficacy of nanomedicines on malignant tumors by amplifying oxidative stress. Herein, PEGylated Ce-doped hollow mesoporous silica nanoparticles (Ce-HMSN-PEG) loaded with saikosaponin A (SSA) are elaborately constructed as a smart nanoplatform for improving the efficiency of tumor therapy. The carrier Ce-HMSN-PEG showed multi-enzyme activities due to the presence of mixed Ce3+/Ce4+ ions. In the tumor microenvironment, peroxidase-like Ce3+ ions convert endogenous H2O2 into highly toxic ˙OH for chemodynamic therapy, while Ce4+ ions not only show catalase-like activity to reduce tumor hypoxia but also exhibit glutathione (GSH) peroxidase-mimicking properties to effectively deplete GSH in tumor cells. Moreover, the loaded SSA can cause the enrichment of superoxide anions (˙O2-) and H2O2 within tumor cells by disrupting mitochondrial functions. By integrating the respective advantages of Ce-HMSN-PEG and SSA, the as-prepared SSA@Ce-HMSN-PEG nanoplatform can efficiently trigger cancer cell death and inhibit tumor growth via significantly enhanced ROS production. Therefore, this positive combination therapy strategy has a good application prospect for enhancing antitumor efficacy.


Subject(s)
Hereditary Sensory and Motor Neuropathy , Neoplasms , Humans , Reactive Oxygen Species , Hydrogen Peroxide , Superoxides , Peroxidases , Glutathione , Cell Line, Tumor , Tumor Microenvironment , Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...