Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(51): eadj6856, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38117876

ABSTRACT

Soft materials with mechanical adaptability have substantial potential for various applications in tissue engineering. Gaining a deep understanding of the structural evolution and adaptation dynamics of soft materials subjected to cyclic stretching gives insight into developing mechanically adaptive materials. Here, we investigate the effect of hierarchy structure on the mechanical adaptation of self-healing hydrogels under cyclic stretching training. A polyampholyte hydrogel, composed of hierarchical structures including ionic bonds, transient and permanent polymer networks, and bicontinuous hard/soft-phase networks, is adopted as a model. Conditions for effective training, mild overtraining, and fatal overtraining are demonstrated in soft materials. We further reveal that mesoscale hard/soft-phase networks dominate the long-term memory effect of training and play a crucial role in the asymmetric dynamics of compliance changes and the symmetric dynamics of hydrogel shape evolution. Our findings provide insights into the design of hierarchical structures for adaptive soft materials.

2.
Proc Natl Acad Sci U S A ; 119(36): e2207422119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037384

ABSTRACT

Understanding the physical principle that governs the stimuli-induced swelling and shrinking kinetics of hydrogels is indispensable for their applications. Here, we show that the shrinking and swelling kinetics of self-healing hydrogels could be intrinsically asymmetric. The structure frustration, formed by the large difference in the heat and solvent diffusions, remarkably slows down the shrinking kinetics. The plateau modulus of viscoelastic gels is found to be a key parameter governing the formation of structure frustration and, in turn, the asymmetric swelling and shrinking kinetics. This work provides fundamental understandings on the temperature-triggered transient structure formation in self-healing hydrogels. Our findings will find broad use in diverse applications of self-healing hydrogels, where cooperative diffusion of water and gel network is involved. Our findings should also give insight into the molecular diffusion in biological systems that possess macromolecular crowding environments similar to self-healing hydrogels.


Subject(s)
Hydrogels , Temperature , Diffusion , Hydrogels/chemistry , Kinetics , Water/chemistry
3.
Sci Adv ; 7(16)2021 Apr.
Article in English | MEDLINE | ID: mdl-33853776

ABSTRACT

We investigate the fatigue resistance of chemically cross-linked polyampholyte hydrogels with a hierarchical structure due to phase separation and find that the details of the structure, as characterized by SAXS, control the mechanisms of crack propagation. When gels exhibit a strong phase contrast and a low cross-linking level, the stress singularity around the crack tip is gradually eliminated with increasing fatigue cycles and this suppresses crack growth, beneficial for high fatigue resistance. On the contrary, the stress concentration persists in weakly phase-separated gels, resulting in low fatigue resistance. A material parameter, λtran, is identified, correlated to the onset of non-affine deformation of the mesophase structure in a hydrogel without crack, which governs the slow-to-fast transition in fatigue crack growth. The detailed role played by the mesoscale structure on fatigue resistance provides design principles for developing self-healing, tough, and fatigue-resistant soft materials.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33782118

ABSTRACT

Tough soft materials usually show strain softening and inelastic deformation. Here, we study the molecular mechanism of abnormally large nonsoftening, quasi-linear but inelastic deformation in tough hydrogels made of hyperconnective physical network and linear polymers as molecular glues to the network. The interplay of hyperconnectivity of network and effective load transfer by molecular glues prevents stress concentration, which is revealed by an affine deformation of the network to the bulk deformation up to sample failure. The suppression of local stress concentration and strain amplification plays a key role in avoiding necking or strain softening and endows the gels with a unique large nonsoftening, quasi-linear but inelastic deformation.

5.
ACS Macro Lett ; 10(6): 708-713, 2021 06 15.
Article in English | MEDLINE | ID: mdl-35549109

ABSTRACT

Biological tissues usually have complex superstructures and elaborated functionalities. However, creating superstructures in soft and wet hydrogels is challenging because of the absence of effective approaches to control the molecular orientation. Here we introduce a method to create superstructures in photonic hydrogels comprising lamellar bilayers intercalated in the cross-linked polymer network. The orientation of lamellar bilayers in the photonic gel, which are sensitive to shear, is modulated by applying a gradient shear field on the precursor solution using a customized rheometer. The difference in orientation of lamellar bilayers leads to swelling mismatch in the radial direction, endowing the disk-shape hydrogel with a macroscopic flower-like shape with a central dome and an edge petal, along with a bright photonic color. By characterization of the swelling anisotropy of the radial profile, the shear rate required for the unidirectional orientation of lamellar bilayers was extracted. Moreover, a delayed polymerization experiment was designed to measure the lifetime of aligned lamellar bilayers, which reveals the domain size of lamellar bilayers in the precursor solution. Furthermore, we also demonstrated that the hydrogel flowers could fade and rebloom reversibly in response to external stimuli. This work presents a strategy to develop superstructures in hydrogels and sheds light on designing biomimetic materials with intricately architectural superstructure.


Subject(s)
Biomimetic Materials , Hydrogels , Anisotropy , Biomimetic Materials/chemistry , Hydrogels/chemistry , Optics and Photonics , Polymers/chemistry
6.
Proc Natl Acad Sci U S A ; 117(32): 18962-18968, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719128

ABSTRACT

The memory of our brain, stored in soft matter, is dynamic, and it forgets spontaneously to filter unimportant information. By contrast, the existing manmade memory, made from hard materials, is static, and it does not forget without external stimuli. Here we propose a principle for developing dynamic memory from soft hydrogels with temperature-sensitive dynamic bonds. The memorizing-forgetting behavior is achieved based on fast water uptake and slow water release upon thermal stimulus, as well as thermal-history-dependent transparency change of these gels. The forgetting time is proportional to the thermal learning time, in analogy to the behavior of brain. The memory is stable against temperature fluctuation and large stretching; moreover, the forgetting process is programmable. This principle may inspire future research on dynamic memory based on the nonequilibrium process of soft matter.

7.
ACS Macro Lett ; 9(11): 1582-1589, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-35617060

ABSTRACT

The tough and self-healing hydrogels composed of polyampholytes (PA gels) are drawing great attention due to their multiscale structures and the resultant multiple mechanical properties. This work studies the stress relaxation behavior of PA gels and reveals the underlying multiscale structure evolutions by combining birefringence and small-angle X-ray scattering measurements. The PA gels show a fast and strong stress relaxation that obeys the stress-optical rule, which could be associated with relaxation of chain segment orientation by the breaking of ionic bonds. A slow and weak relaxation of phase structure (∼100 nm) is also observed, which tells that the stress redistributes and local strain amplification gradually builds in the phase network at long relaxation times as a result of synergetic breaking of multiple ionic bonds. This work gives insight into exploring the formation of the crack precursor that is important in the fracture and fatigue of self-healing hydrogels.

8.
Phys Rev Lett ; 121(18): 185501, 2018 Nov 02.
Article in English | MEDLINE | ID: mdl-30444402

ABSTRACT

Understanding the energy dissipation mechanism during deformation is essential for the design and application of tough soft materials. We show that, in a class of tough and self-healing polyampholyte hydrogels, a bicontinuous network structure, consisting of a hard network and a soft network, is formed, independently of the chemical details of the hydrogels. Multiscale internal rupture processes, in which the double-network effect plays an important role, are found to be responsible for the large energy dissipation of these hydrogels.

SELECTION OF CITATIONS
SEARCH DETAIL
...