Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Environ Contam Toxicol ; 109(2): 409-416, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35536319

ABSTRACT

In this study, a composite algaecide containing flocculants and Cinnamomum. camphora leaves extracts (CCCLE) were synthesized. The inhibition and flocculation effects on Microcystis aeruginosa (M. aeruginosa) were investigated, and the release of microcystin-LR (MC-LR) was determined. Results showed that the CCLEC composite algaecide was effective for the inhibition and flocculation of M. aeruginosa, and the optimal dose of CCLEC composite algaecide was 1.8%, which resulted in an algae inhibition ratio of 98.00% and a flocculation efficiency of 99.44% within 5 days of M. aeruginosa culturing. Besides, the total amount of MC-LR decreased by 80.04% on day 20 compared with the control group, while the concentration of intracellular MC-LR on day 5 was 36.69 µg L-1, which was related to a portion of cells underwent apoptosis-like cell death under CCLEC composite algaecide stress. The results of this study may improve our understanding of the M. aeruginosa control by CCCLE composite algaecide.


Subject(s)
Cinnamomum camphora , Herbicides , Microcystis , Cinnamomum camphora/metabolism , Herbicides/metabolism , Microcystins/metabolism , Plant Extracts/pharmacology , Plant Leaves/metabolism
2.
Angew Chem Int Ed Engl ; 53(14): 3612-6, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24591265

ABSTRACT

Recently, porous hydrophobic/oleophilic materials (PHOMs) have been shown to be the most promising candidates for cleaning up oil spills; however, due to their limited absorption capacity, a large quantity of PHOMs would be consumed in oil spill remediation, causing serious economic problems. In addition, the complicated and time-consuming process of oil recovery from these sorbents is also an obstacle to their practical application. To solve the above problems, we apply external pumping on PHOMs to realize the continuous collection of oil spills in situ from the water surface with high speed and efficiency. Based on this novel design, oil/water separation and oil collection can be simultaneously achieved in the remediation of oil spills, and the oil sorption capacity is no longer limited to the volume and weight of the sorption material. This novel external pumping technique may bring PHOMs a step closer to practical application in oil spill remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...