Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 16(12): 2521-2527, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33907043

ABSTRACT

The expression of major histocompatibility complex class I (MHC-I), a key antigen-presenting protein, can be induced in dopaminergic neurons in the substantia nigra, thus indicating its possible involvement in the occurrence and development of Parkinson's disease. However, it remains unclear whether oxidative stress induces Parkinson's disease through the MHC-I pathway. In the present study, polymerase chain reaction and western blot assays were used to determine the expression of MHC-I in 1-methyl-4-phenylpyridinium (MPP+)-treated SH-SY5Y cells and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease mouse model. The findings revealed that MHC-I was expressed in both models. To detect whether the expression of MHC-I was able to trigger the infiltration of cytotoxic T cells, immunofluorescence staining was used to detect cytotoxic cluster of differentiation 8 (CD8)+ T cell infiltration in the substantia nigra of MPTP-treated mice. The results indicated that the presentation of MHC-I in dopaminergic neurons was indeed accompanied by an increase in the number of CD8+ T cells. Moreover, in MPTP-induced Parkinson's disease model mice, the genetic knockdown of endogenous MHC-I, which was caused by injecting specific adenovirus into the substantia nigra, led to a significant reduction in CD8+ T cell infiltration and alleviated dopaminergic neuronal death. To further investigate the molecular mechanisms of oxidative stress-induced MHC-I presentation, the expression of PTEN-induced kinase 1 (PINK1) was silenced in MPP+-treated SH-SY5Y cells using specific small interfering RNA (siRNA), and there was more presentation of MHC-I in these cells compared with control siRNA-treated cells. Taken together, MPP+-/MPTP-induced oxidative stress can trigger MHC-I presentation and autoimmune activation, thus rendering dopaminergic neurons susceptible to immune cells and degeneration. This may be one of the mechanisms of oxidative stress-induced Parkinson's disease, and implies the potential neuroprotective role of PINK1 in oxidative stress-induced MHC-I presentation. All animal experiments were approved by the Southern Medical University Ethics Committee (No. 81802040, approved on February 25, 2018).

2.
Sci Rep ; 7(1): 14, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28144039

ABSTRACT

Increasing evidence suggests that ion channel genes play an important role in the progression of gliomas. However, the mechanisms by which ion channel genes influence the progression of glioma are not fully understood. We identified KCNB1 as a novel ion gene, associated with malignant progression and favorable overall survival (OS) and progression-free survival (PFS) in glioma patients from three datasets (CGGA, GSE16011 and REMBRANDT). Moreover, we characterized a novel function of autophagy induction accompanied by increased apoptosis and reduced proliferation and invasion of glioma cells for KCNB1. KEGG pathway analysis and in vitro studies suggested that the ERK pathway is involved in KCNB1-mediated regulation of autophagy, which was confirmed by inhibition of KCNB1-induced autophagy by using a selective ERK1/2 inhibitor (U0126) or siERK1/2. In vivo studies showed that KCNB1 induced autophagy while inhibiting tumor growth and increasing survival. Overall, our studies define KCNB1 as a novel prognostic factor for gliomas that exerts its tumor suppressive function through autophagy induction.


Subject(s)
Autophagy , Brain Neoplasms/diagnosis , Glioma/diagnosis , Shab Potassium Channels/genetics , Apoptosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Butadienes/pharmacology , Cell Line, Tumor , Datasets as Topic , Disease-Free Survival , Glioma/genetics , Glioma/pathology , Humans , MAP Kinase Signaling System , Neoplasm Invasiveness/genetics , Nitriles/pharmacology , Prognosis
3.
Drug Des Devel Ther ; 9: 1449-58, 2015.
Article in English | MEDLINE | ID: mdl-25792805

ABSTRACT

BACKGROUND: In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3(+) and CD4(+)T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs) were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs). METHODS: Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. RESULTS: DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10) and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo-ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. CONCLUSION: Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4(+)T and Tregs/CD25(+)T cells in TDLNs inhibit DCs' activity and function.


Subject(s)
Cryosurgery , Dendritic Cells/immunology , Glioma/immunology , Glioma/surgery , Lymph Nodes/immunology , Animals , Dendritic Cells/cytology , Disease Models, Animal , Glioma/pathology , Lymph Nodes/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...