Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dev Ctries ; 18(4): 645-650, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38728637

ABSTRACT

INTRODUCTION: Streptococcus suis (S. suis) disease is a zoonotic infection caused by invasive S. suis and can lead to meningitis, septic shock, arthritis, and endocarditis. Early treatment is the key to reducing mortality. However, clinical manifestations of most cases are atypical, severely limiting rapid diagnosis and treatment. CASE REPORT: Here, we report a 74-year-old female patient diagnosed with S. suis infection. The main symptoms were hearing loss, lumbago, and scattered ecchymosis of the lower extremities and trunk. Blood non-specific infection indexes were significantly increased and platelets were significantly decreased; however, no pathogens were obtained from routine blood culture. Finally, the S. suis infection was confirmed by metagenomic next-generation sequencing (mNGS) of blood and cerebrospinal fluid. After antibiotic treatment, the limb and trunk scattered ecchymosis and lumbago symptoms were significantly relieved, but the hearing did not recover. CONCLUSIONS: Human infection with S. suis is rare in central cities, and it is easy to misdiagnose, especially in cases with atypical early symptoms. mNGS technology, combined with clinical observation, is helpful to clarify the direction of diagnosis and treatment, which is conducive to patient recovery.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Streptococcal Infections , Streptococcus suis , Humans , Streptococcus suis/genetics , Streptococcus suis/isolation & purification , Female , Aged , Streptococcal Infections/diagnosis , Streptococcal Infections/microbiology , Streptococcal Infections/drug therapy , Metagenomics/methods , Anti-Bacterial Agents/therapeutic use
2.
Shock ; 62(1): 139-145, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38546380

ABSTRACT

ABSTRACT: Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Intestinal Mucosa , Mitochondria , Nod2 Signaling Adaptor Protein , Rats, Sprague-Dawley , Animals , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Male , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Nod2 Signaling Adaptor Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cytokines/metabolism , Lipopolysaccharides/toxicity , Sepsis/metabolism , Interleukin-6/metabolism , Microtubule-Associated Proteins/metabolism , Inflammation/metabolism , Reactive Oxygen Species/metabolism
3.
ACS Appl Mater Interfaces ; 15(33): 39363-39373, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37614005

ABSTRACT

Manganese silicate (Mn2SiO4) possesses a more suitable volume expansion (186%) compared to SiOx-based materials and is also characterized by low cost, environmental friendliness, and considerable theoretical capacity. Hollow Mn2SiO4 sub-microspheres encapsulated by a highly continuous network of conductive carbon (MSC) are prepared by the self-templating method and subsequent ZIF-8-derived carbon coating. The as-prepared Mn2SiO4@C hybrid under optimal conditions (MSC-2) can provide a high capacity of 1343 mA h g-1 at 0.2 A g-1 and an excellent rate performance of 434 mA h g-1 at 10 A g-1. Even after 500 cycles, MSC-2 can still maintain a considerable specific capacity of 554 mA h g-1 at a high current density of 5.0 A g-1. Additionally, the full cell assembled with MSC-2 anode and LiFePO4 cathode (MSC-2//LFP) possesses a robust energy density of 218 W h kg-1, excellent power density of 2.5 kW kg-1, and good cycling stability.

4.
Open Med (Wars) ; 17(1): 1308-1317, 2022.
Article in English | MEDLINE | ID: mdl-35937002

ABSTRACT

This study aimed to investigate whether ghrelin affected the autophagy and inflammatory response of intestinal intraepithelial lymphocytes (IELs) by regulating the NOD2/Beclin-1 pathway in an intestinal ischemia-reperfusion (I/R) injury model. Twenty hours after implementing the intestinal I/R injury rat model, the small intestine and both lungs were collected for histological analysis. The morphological changes in the intestinal mucosa epithelium and lung tissues were evaluated using hematoxylin-eosin staining. The activity of autophagic vacuoles and organ injury were evaluated using electron microscopy. The cytokine levels (IL-10 and TNF-α) in IEL cells and lung tissue were determined using enzyme-linked immunosorbent assay. RT-qPCR and western blot assays were conducted to check the NOD2, Beclin-1, and ATG16 levels. Ghrelin relieved the I/R-induced destruction of the intestinal mucosa epithelium and lung tissues. Moreover, ghrelin enhanced autophagy in the intestinal epithelium and lungs of I/R rats. In addition, the levels of autophagy-associated proteins (Beclin-1, ATG16, and NOD2) were higher in the ghrelin treatment group than in rats with I/R. Ghrelin reduced significantly the IL-10 and TNF-α levels. However, these changes were reversed by the NOD2 antagonist. In conclusion, ghrelin may relieve I/R-induced acute intestinal mucosal damage, autophagy disorder, and inflammatory response in IELs by regulating the NOD2/Beclin-1 pathway.

5.
BMC Infect Dis ; 22(1): 616, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35840919

ABSTRACT

BACKGROUND: The early clinical diagnosis of spinal infections in elderly patients with recessive or atypical symptoms is difficult. Klebsiella aerogenes is a common opportunistic bacterium that can infect the respiratory tract, urinary tract, and even the central nervous system. However, whether it can infect the lumbar spine has not been previously described. CASE PRESENTATION: In this paper, we report the case of a 69-year-old female patient with osteoporosis who was initially diagnosed with hemolytic anemia. Later, she was diagnosed with K. aerogenes infection of the lumbar spine based on imaging combined with blood culture and metagenome next-generation sequencing (mNGS) detection. After precise medication, the lumbar degeneration was improved. CONCLUSIONS: Bacterial infection should therefore be considered in cases of lumbar degenerative disease in middle-aged and elderly patients.


Subject(s)
Enterobacter aerogenes , Klebsiella Infections , Aged , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Klebsiella Infections/diagnosis , Lumbar Vertebrae , Metagenome , Middle Aged
6.
ACS Appl Mater Interfaces ; 14(22): 25962-25971, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35635000

ABSTRACT

Optimization of the cathode structure and exploration of a novel electrolyte system are important approaches for achieving high-performance zinc-ion batteries (ZIBs) and zinc dendrite suppression. Herein, a quasi-solid-state ZIB combining a sandwich-like MnO2@rGO cathode, a laponite (Lap)-modified polyacrylamide (PAM) hydrogel electrolyte, and an electrodeposited zinc anode is designed and constructed by a synergistic optimization strategy. The MnO2 composite prepared through the intercalation of rGO shows developed mesopores, providing accessible ion transport channels and exhibiting a high electrical conductivity. Thanks to the high dispersion of Lap nanoplates in the hydrogel and good charge-averaging effect, the Zn//PAM-5%Lap//Zn symmetrical battery exhibits a consistent low-voltage polarization of less than 60 mV within 2000 h without a short-circuit phenomenon or any over-potential rise, indicating a stable zinc peeling/plating process. The optimized quasi-solid-state ZIB delivers a high reversible capacity of 291 mA h g-1 at a current density of 0.2 A g-1 due to the synergistic effect of each component of ZIB. Even at a high rate of 2 A g-1, it still maintains a high reversible capacity of 97 mA h g-1 after 2000 cycles, indicating its excellent electrochemical performance. Furthermore, the assembled flexible battery performs excellently in terms of damage and bending resistance.

8.
ACS Nano ; 15(4): 7021-7031, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33851824

ABSTRACT

Tin-based materials with high specific capacity have been studied as high-performance anodes for energy storage devices. Herein, a SnOx (x = 0, 1, 2) quantum dots@carbon hybrid is designed and prepared by a binary oxide-induced surface-targeted coating of ZIF-8 followed by pyrolysis approach, in which SnOx quantum dots (under 5 nm) are dispersed uniformly throughout the nitrogen-containing carbon nanocage. Each nanocage is cross-linked to form a highly conductive framework. The resulting SnOx@C hybrid exhibits a large BET surface area of 598 m2 g-1, high electrical conductivity, and excellent ion diffusion rate. When applied to LIBs, the SnOx@C reveals an ultrahigh reversible capacity of 1824 mAh g-1 at a current density of 0.2 A g-1, and superior capacities of 1408 and 850 mAh g-1 even at high rates of 2 and 5 A g-1, respectively. The full cell assembled using LiFePO4 as cathode exhibits the high energy density and power density of 335 Wh kg-1 and 575 W kg-1 at 1 C based on the total active mass of cathode and anode. Combined with in situ XRD analysis, the superior electrochemical performance can be attributed to the SnOx-ZnO-C asynchronous and united lithium storage mechanism, which is formed by the well-designed multifeatured construction composed of SnOx quantum dots, interconnected carbon network, and uniformly dispersed ZnO nanoparticles. Importantly, this designed synthesis can be extended for the fabrication of other electrode materials by simply changing the binary oxide precursor to obtain the desired active component or modulating the type of MOFs coating to achieve high-performance LIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...