Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Small ; : e2405932, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39171771

ABSTRACT

Semiconductive metal-organic frameworks (MOFs) with donor-acceptor (D-A) characteristics have garnered attractive attention due to their capacity for separating and transferring photogenerated charges, making them promising candidates for high-performance X-ray detectors. However, the low charge transfer efficiency between the metal nodes and organic ligands limits the X-ray-to-electricity conversion efficiency of these materials. Herein, an additional photoactive donor (D') is introduced by incorporating a heavy atom-containing polyoxometalate (POM) [α-SiW12O40]4- into a binary {[Ni·bcbp·(H2O)2]·(H2O)4·Cl}n (Ni-bcbp, bcbp: H2bcbp·2Cl = 1,1'-bis(4-carboxyphenyl)(4,4'-bipyridinium) dichloride) MOF, resulting in a semiconductive ternary D-D'-A framework {[Ni2(bcbp)2·(H2O)4·(DMA)]·(SiW12O40)}n (SiW@Ni-bcbp, DMA: dimethylacetamide). The obtained material features an unprecedented porous 8-connected bcu-net structure that accommodates nanoscale [α-SiW12O40]4- counterions, displaying uncommon optoelectronic responses. In contrast to binary Ni-bcbp, the SiW@Ni-bcbp framework exhibits distinctive photochromism and robust X-ray responsiveness, which can be attributed to the synergistic effects of the electron reservoir and multiple photoinduced electron transfer originating from the POMs. As a result, the X-ray detector based on SiW@Ni-bcbp demonstrates a sensitivity of 5741.6 µC Gyair -1 cm-2 with a low detection limit of 0.49 µGyair s-1. Moreover, the devices demonstrated the capability of producing clearness X-ray images, providing a feasible and stable solution for constructing high-performance direct X-ray detectors.

2.
J Colloid Interface Sci ; 647: 277-286, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37262990

ABSTRACT

The development of wearable electronics is restricted by the developments of supporting energy storage devices, especially flexible supercapacitors. Nowadays, miniaturized supercapacitors based on MXenes due to their obvious advantages in the specific capacity have received extensive attention. The energy existing in the surrounding environment has been used to directly charge energy storage devices. However, the hybrid wearable electronics integrated supercapacitors are mechanically connected through metal wires leading to non-compact devices. Thus, it is urgent to develop a general and universal method to fabricate high-performance robust MXene-based flexible electrodes with high electrical conductivity and apply them to self-chargeable supercapacitors and compact wearable devices. Herein, the bacterial cellulose (BC) nanofibers are used as a crosslinking agent to connect two-dimensional MXene nanosheets through the hydrogen bond, which greatly improves the mechanical strength of MXene-bacterial cellulose (MXene-BC) composite films (Young's modulus reaching 6.8 GPa). The supercapacitors made with the electrodes of MXene-BC composite films (BC content is 10%) present high capacitance behavior (areal capacitance up to 346 mF cm-2) because the introduction of BC nanofibers increases the interlayer spacing of MXene nanosheets, providing more storage space for the ions in the electrolyte. Then, a self-chargeable supercapacitor is proposed based on the combination of a zinc-air (Zn-air) battery and a supercapacitor. The self-chargeable supercapacitor can realize self-charging after dropping a drop of electrolyte solution into the Zn-air battery. The charging voltage of a single self-chargeable supercapacitor can reach 0.6 V after adding artificial sweat as the electrolyte. Finally, a smart wristband with the function of self-charging is proposed, which can absorb the sweat generated by the human for self-chargeable supercapacitors to drive the pedometer integrated within the smart wristband to work. The proposed self-chargeable supercapacitors are simple and effective, not restricted by the use environment, providing a promising way for self-powered wearable electronics.

3.
Soft Matter ; 18(47): 9057-9068, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36416498

ABSTRACT

In recent years, graphene oxide (GO)-based multi-responsive actuators have attracted great interest due to their board application in soft robots, artificial muscles, and intelligent mechanics. However, most GO-based actuators suffer from low mechanical strength. Inspired by the natural nacre, a graphene oxide-bacterial cellulose (GO-BC) film with a "brick and mortar" structure is constructed. Compared with the pure GO film, the tensile strength of the GO-BC film is increased by about 2 times. Benefiting from the rich oxygen-containing functional groups of GO sheets and BC nanofibers, the cracked GO-BC films can be pasted together with the help of water, which can be used to construct GO-BC films with multi-dimensional complex structures. Subsequently, a GO-BC/polymer actuator capable of responding to various stimuli is successfully developed through a complementary strategy of "active layer and inert layer". Further, based on the water-assisted pasting properties of GO-BC films, a series of GO-BC/polymer actuators with 3D complex deformations can be fabricated by pasting together two or more GO-BC/polymer actuators. Finally, the potential applications of multi-response GO-BC/polymer actuators in flexible robots, artificial muscles, and smart devices are demonstrated through a series of applications such as bionic sunflowers, octopus-inspired soft tentacles, and smart curtains.


Subject(s)
Nacre , Cellulose , Water
SELECTION OF CITATIONS
SEARCH DETAIL