Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Aquac Nutr ; 2024: 6337005, 2024.
Article in English | MEDLINE | ID: mdl-38298207

ABSTRACT

The effects of plant protein sources (PPSs) on the health of the liver and intestine of the largemouth bass, Micropterus salmoides, were compared to verify the potential damaging effects of dietary fiber (DF). A diet containing 55% fish meal (FM) was used as the control. The test diets contained 25% soybean meal (SBM), rapeseed meal (RSM), cottonseed meal, or peanut meal, and the FM content was decreased to 30%. The protein and lipid contents of these five diets were balanced by casein and oil. Fish were raised for 8 weeks. The fish fed the diet containing PPS showed a trend of decreasing growth and apparent digestibility coefficients. The contents of total bile acid, lipid, and collagen in the liver were increased, and the mRNA expression levels of genes encoding inflammatory factors and enzymes involved in de novo fatty acid synthesis and bile acid synthesis were upregulated. Both the lipid and collagen contents in the liver were positively correlated with the DF content in the diet significantly. Morphology and histology showed reduced liver size, hepatic steatosis, and fibrosis in fish fed diets containing PPS. The lowest hepatosomatic index was observed in fish fed the SBM diet, and the most severe damage was observed in fish fed the RSM diet. No obvious histological abnormalities were observed in the hindgut. The bile acid profile in the liver could be used to distinguish the types of PPS very well by Fisher discriminant analysis. These results indicated that 25% of each of the four PPSs in the diet exceeded the tolerance range of largemouth bass and caused liver damage, which might be mediated by bile acid. DF in PPS might be an important agent contributing to liver damage.

2.
Fish Physiol Biochem ; 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36454392

ABSTRACT

In a study on the anti-nutritional effect of dietary fiber, it was noticed that a high-pectin diet (PEC diet) caused growth retardation, hepatic cholestasis, steatosis, fibrosis, and enteritis accompanied by decreased glycocholic acid (GCA) in Pelteobagrus fulvidraco. This study was conducted to investigate the potential alleviating effects of supplementation with GCA. A PEC diet and a diet supplemented with 0.6 g kg-1 GCA based on the PEC diet (named the GCA diet) were formulated and randomly fed to juvenile Pelteobagrus fulvidraco. Compared to fish that were fed the PEC diet for 7 days, the GCA content in liver increased significantly in fish fed the GCA diet, the incidence of abnormal liver color, gallbladder somatic index (GBSI), total bile acid concentration in serum and liver, and the expression of arnesoid X receptor gene (fxr) upregulated and genes involved in bile acid (BA) synthesis and uptake in liver decreased significantly. After 56 days, the SGR, the expression of fxr and genes involved in BA synthesis and transportation in the liver, the serum content of total bilirubin, total protein, and globulin were significantly higher, while the hepatosomatic index, GBSI, liver lipid and collagen content, and the incidence of distal intestine tissue damage were lower in fish fed the GCA diet than in those fed the PEC diet. These results suggested that GCA improved growth performance and alleviated hepatic cholestasis and tissue damage to the liver and intestine induced by a high-pectin diet, which might occur through activating FXR.

3.
Aquac Nutr ; 2022: 6173245, 2022.
Article in English | MEDLINE | ID: mdl-36860455

ABSTRACT

The concentration of butyric acid in the intestine increased with the increase in the content of fermentable dietary fibre; however, the potential physiological impact of a high dose of butyric acid on fish has not been sufficiently studied. The aim of this study was to investigate the effect of two dosages of butyric acid on the growth and health of the liver and intestine of the largemouth bass (Micropterus salmoides). Sodium butyrate (SB) was added to the diet at 0 g/kg (CON), 2 g/kg (SB2), and 20 g/kg (SB20), and the juvenile largemouth bass were fed to apparent satiation for 56 days. No significant difference was observed in the specific growth rate or hepatosomatic index among the groups (P > 0.05). The concentration of ß-hydroxybutyric acid in the liver, the activities of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase, and the concentrations of triglyceride and total cholesterol in serum increased significantly in the SB20 group compared to the CON group (P < 0.05). The relative expression of fas, acc, il1b, nfkb, and tnfa in the liver of the SB20 groups was also significantly higher than that of the CON group (P < 0.05). The above indicators in the group SB2 had similar change tendencies. The expression of nfkb and il1b in the intestine of both the SB2 and SB20 groups was significantly downregulated compared with that in the CON group (P < 0.05). The size of hepatocytes was enlarged, and the intracellular lipid droplets and the degree of hepatic fibrosis were increased in the SB20 group compared to the CON group. There was no significant difference in intestinal morphology among the groups. The above results indicated that neither 2 g/kg nor 20 g/kg SB had a positive effect on the growth of largemouth bass, while a high dosage of SB induced liver fat accumulation and fibrosis.

4.
Fish Physiol Biochem ; 47(6): 2015-2025, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34709495

ABSTRACT

To reveal the impact of dietary fiber (DF) on the bile acid (BA) profiles of fish, yellow catfish (Pelteobagrus fulvidraco) were fed a diet containing 300 g kg-1 dextrin (CON diet, control) or pectin (a type of soluble DF, PEC diet) for 7 days, and then the BA profiles were analyzed by UHPLC-MS/MS. A total of 26 individuals of BAs were detected in the fish body, with 8, 10, 14, and 22 individuals of BAs detected in the liver, serum, bile, and hindgut digesta, respectively. The conjugated BAs (CBAs) of fish were dominated by taurine CBAs (TCBAs). The concentrations of free BAs (FBAs) and the value of FBAs/CBAs in the bile of fish fed the PEC diet were nearly 5 and 7 times higher, respectively than those in fish fed the CON diet. The value of glycine CBAs/TCBAs in the liver, serum and bile of fish fed the PEC diet was significantly lower, and in the hindgut digesta was higher than that of fish fed the CON diet (P < 0.05). These results suggested that dietary pectin greatly changed the BA profiles of Pelteobagrus fulvidraco, attributed to inhibition of reabsorption of BAs. Therefore, attention should be paid to the impact on BA homeostasis when replacing fishmeal with DF-rich plant ingredients in the fish diet.


Subject(s)
Bile Acids and Salts , Catfishes , Pectins/administration & dosage , Animals , Bile Acids and Salts/analysis , Diet/veterinary , Liver , Tandem Mass Spectrometry , Taurine
5.
Fish Physiol Biochem ; 43(6): 1487-1500, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28646459

ABSTRACT

In this study, two experiments were performed to explore the function of silymarin in adipogenesis in grass carp (Ctenopharyngodon idellus) using in vitro and in vivo models. In experiment 1, differentiated grass carp pre-adipocytes were treated with silymarin for 6 days. Treatment with 100 µg mL-1silymarin (SM100 group) significantly reduced triglyceride accumulation at day 6. The adipogenic gene expression levels of PPARγ, C/EBPα, SREBP1c, FAS, SCD1, and LPL, and the protein expression level of PPARγ were significantly down-regulated in the SM100 group. Additionally, the SM100 group had significantly lower reactive oxygen species production and reduced glutathione contents compared with the control in vitro. In experiment 2, the juvenile grass carp (mean body weight= 27.4 ± 0.17 g) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg-1 silymarin (SM0, SM100, SM200) associated with either 4 or 8% lipid levels (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results demonstrated that dietary silymarin supplementation significantly reduced the elevated intraperitoneal fat index in grass carp fed with high-lipid diets, and the gene expression of adipogenesis (PPARγ, FAS) when supplemented with dietary silymarin was notably lower than when no silymarin was supplemented under the high-lipid diets. Thus, our data suggest that silymarin suppressed lipid accumulation in grass carp both in vitro and in vivo, and the effect might be due to an influence on the expression of adipogenesis factors and ROS production partly associated with effects on antioxidant capability.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Carps , Silymarin/pharmacology , Adipocytes/physiology , Animal Feed/analysis , Animals , Cell Survival , Dietary Fats/administration & dosage , Dietary Supplements , Gene Expression Regulation/drug effects , Reactive Oxygen Species , Silymarin/administration & dosage , Silymarin/chemistry , Superoxide Dismutase
6.
Fish Physiol Biochem ; 43(1): 245-263, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27632016

ABSTRACT

This study was carried out to evaluate whether silymarin supplementation influences growth, lipid metabolism, and health status in grass carp fed elevated dietary lipid levels. The juvenile fish (27.43 ± 0.17 g/tail) were fed six isonitrogenous and isocaloric diets in a factorial design containing 0, 100, or 200 mg kg-1 silymarin (SM0, SM100, SM200) associated with either 4 or 8 % lipid level (low lipid, LL, and high lipid, HL, respectively) for 82 days. The results showed that both dietary silymarin supplementation and high lipid level significantly enhanced growth performance (WG, SGR), protein efficiency ratio, and feed utilization. Silymarin supplementation significantly reduced the VSI, hepatic lipid content, and the total bilirubin concentration in the serum. The gallbladdersomatic index displayed higher in the SM100 groups than SM200 groups. Serum total cholesterol content exhibited lower in the SM100 groups than SM0 groups. Meanwhile, significant interactions were shown for hepatic gene expression of HSL and CPT1 by two factors, and SM100 group had higher hepatic gene expression of HSL and CPT1 in fish fed with the HL diets. The SM100 groups up-regulated hepatic gene expressions of HMGCR and CYP7A1 compared with the SM0 groups. Silymarin supplementation notably reduced the elevated serum MDA content induced by HL treatments. Thus, silymarin supplementation markedly promoted growth and protein efficiency, suppressed lipid accumulation, and improved health status in grass carp fed with high-lipid diets, which might be associated with its enhancement of lipolysis and ß-oxidation, antioxidant capacity.


Subject(s)
Carps/growth & development , Carps/metabolism , Diet, High-Fat , Dietary Supplements , Silymarin/pharmacology , Animals , Carnitine O-Palmitoyltransferase/genetics , Cholesterol/blood , Cholesterol/metabolism , Cholesterol 7-alpha-Hydroxylase/genetics , Dietary Fats/pharmacology , Fish Proteins/genetics , Hepatopancreas/metabolism , Hydroxymethylglutaryl CoA Reductases/genetics , Lipid Metabolism/drug effects , Liver/metabolism , Sterol Esterase/genetics
7.
Br J Nutr ; 115(11): 1958-66, 2016 06.
Article in English | MEDLINE | ID: mdl-27080419

ABSTRACT

The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41

Subject(s)
6-Phytase/pharmacology , Cytokines/metabolism , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Inflammation/chemically induced , Intestine, Small/drug effects , Tilapia , 6-Phytase/adverse effects , 6-Phytase/metabolism , Animals , Aquaculture , Cytokines/genetics , Fungal Proteins/pharmacology , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Inflammation/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Intestine, Small/microbiology , Phosphorus/metabolism , Stress, Physiological , Tilapia/growth & development , Tilapia/metabolism , Up-Regulation
8.
Fish Physiol Biochem ; 40(6): 1783-92, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25074470

ABSTRACT

To confirm the existence of the tight junction (TJ) in middle intestine and obtain the genetic information of Claudin-3, Claudin-15a, Claudinb and Claudinc of grass carp, we observed the physical structure of TJ by transmission electron microscopy and cloned the partial cDNAs of the four Claudins using reverse transcriptase PCR technique. The four partial cDNAs consist of 1,261, 490, 776 and 662 bp encoded 131, 150, 195 and 171 amino acids, respectively. Homology analysis showed that the grass carp Claudin shared high homology with other teleost species, especially with Danio rerio and Carassius auratus. Multi-alignments of the four Claudin amino acid sequences have seen the two conserved cysteines existing in the first extracellular loop of Claudin-15a, Claudinb and Claudinc, and the sequence diversity of the four Claudins mainly lies within the C-terminal tails, which usually end with the -Y-V motif, except the -F-V motif in Claudinb. Tissue distributions of the four Claudins were measured by applying quantitative real-time PCR technique. Results showed that Claudin-3 was mainly expressed in liver and middle intestine and Claudinb was ubiquitously expressed with a higher expression in middle intestine while Claudin-15a and Claudinc were mainly expressed in middle intestine. Our study revealed the existence of the TJ in the middle intestinal and obtained the genetic information of Claudin-3, Claudin-15a, Claudinb and Claudinc of grass carp, aiming to found the molecular biology basis for the further study of the intestinal barrier function of grass carp.


Subject(s)
Carps/metabolism , Claudins/metabolism , Cloning, Molecular , Gene Expression Regulation/physiology , Intestines/physiology , Tight Junctions/physiology , Amino Acid Sequence , Animals , Base Sequence , Claudins/genetics , Intestines/ultrastructure , Molecular Sequence Data , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...