Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 9: 1075465, 2022.
Article in English | MEDLINE | ID: mdl-36714100

ABSTRACT

Background: Acute lung injury (ALI) is a life-threatening inflammatory disease without effective therapeutic regimen. Macrophage polarization plays a key role in the initiation and resolution of pulmonary inflammation. Therefore, modulating macrophage phenotype is a potentially effective way for acute lung injury. Cryptotanshinone (CTS) is a lipophilic bioactive compound extracted from the root of Salvia miltiorrhiza with a variety of pharmacological effects, especially the anti-inflammatory role. In this study, we investigated the therapeutic and immunomodulatory effects of CTS on ALI. Materials and methods: The rat model of ALI was established by intratracheal instillation of LPS (5 mg/kg) to evaluate the lung protective effect of CTS in vivo and to explore the regulation of CTS on the phenotype of lung macrophage polarization. LPS (1 µg/mL) was used to stimulate RAW264.7 macrophages in vitro to further explore the effect of CTS on the polarization and metabolic reprogramming of RAW264.7 macrophages and to clarify the potential mechanism of CTS anti-ALI. Results: CTS significantly improved lung function, reduced pulmonary edema, effectively inhibited pulmonary inflammatory infiltration, and alleviated ALI. Both in vivo and in vitro results revealed that CTS inhibited the differentiation of macrophage into the M1 phenotype and promoted polarization into M2 phenotype during ALI. Further in vitro studies indicated that CTS significantly suppressed LPS-induced metabolic transition from aerobic oxidation to glycolysis in macrophages. Mechanistically, CTS blocked LPS-induced metabolic transformation of macrophages by activating AMPK. Conclusion: These findings demonstrated that CTS regulates macrophage metabolism by activating AMPK, and then induced M1-type macrophages to transform into M2-type macrophages, thereby alleviating the inflammatory response of ALI, suggesting that CTS might be a potential anti-ALI agent.

2.
Biomaterials ; 240: 119849, 2020 05.
Article in English | MEDLINE | ID: mdl-32087458

ABSTRACT

More than 30% of patients with epilepsy progress to drug-resistant epilepsy, leading to a significant increase in morbidity and mortality of epilepsy. The limitation of epileptic drug to reach the epileptogenic focus is the critical reason, and the blood-brain barrier (BBB) plays a crucial role. Here, we successfully constructed a hepatitis B core (HBc) protein nanocage (NC) with the insertion of brain target TGN peptide for facilitating epileptic drug phenytoin delivery to the brain. Our results demonstrated that this nanocage can specifically and efficiently target the brain tissue by 2.4 fold and increase the antiepileptic efficiency of phenytoin about 100 fold in pilocarpine induced models of epilepsy. Both in vivo mice and in vitro human neural three-dimensional cortical organoids demonstrated high penetration ability. These functions are achieved through the facilitation of brain target peptide TGN rather than disruption of brain blood barrier. In summary, we presented an efficient antiepileptic drug delivery nanocage for the treatment of refractory epilepsy. Moreover, this therapeutic modulation also provides promising strategy for other intractable neurological disease.


Subject(s)
Epilepsy , Phenytoin , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Anticonvulsants , Blood-Brain Barrier/metabolism , Epilepsy/drug therapy , Humans , Mice , Phenytoin/therapeutic use
3.
PLoS Biol ; 17(12): e3000525, 2019 12.
Article in English | MEDLINE | ID: mdl-31841517

ABSTRACT

Ubiquitin-specific protease (USP) 6 is a hominoid deubiquitinating enzyme previously implicated in intellectual disability and autism spectrum disorder. Although these findings link USP6 to higher brain function, potential roles for USP6 in cognition have not been investigated. Here, we report that USP6 is highly expressed in induced human neurons and that neuron-specific expression of USP6 enhances learning and memory in a transgenic mouse model. Similarly, USP6 expression regulates N-methyl-D-aspartate-type glutamate receptor (NMDAR)-dependent long-term potentiation and long-term depression in USP6 transgenic mouse hippocampi. Proteomic characterization of transgenic USP6 mouse cortex reveals attenuated NMDAR ubiquitination, with concomitant elevation in NMDAR expression, stability, and cell surface distribution with USP6 overexpression. USP6 positively modulates GluN1 expression in transfected cells, and USP6 down-regulation impedes focal GluN1 distribution at postsynaptic densities and impairs synaptic function in neurons derived from human embryonic stem cells. Together, these results indicate that USP6 enhances NMDAR stability to promote synaptic function and cognition.


Subject(s)
Memory/physiology , Neuronal Plasticity/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Ubiquitin Thiolesterase/metabolism , Animals , Brain/metabolism , Excitatory Postsynaptic Potentials , Hippocampus/metabolism , Humans , Long-Term Potentiation/physiology , Long-Term Synaptic Depression , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/enzymology , Neurons/metabolism , Neurons/physiology , Synapses/metabolism , Synapses/physiology , Ubiquitin Thiolesterase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...