Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937683

ABSTRACT

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Subject(s)
Colletotrichum , Disease Resistance , Gene Expression Profiling , Plant Diseases , Pyrus , Pyrus/microbiology , Pyrus/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Transcriptome , Gene Expression Regulation, Plant
2.
Hum Cell ; 37(4): 959-971, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38607518

ABSTRACT

Acute kidney injury (AKI) induced by renal ischemia/reperfusion injury (IRI) is a severe clinical condition. ROS accumulation, antioxidant pathways deficiency, and inflammation are involved in IRI. Pioglitazone (Pio) exerts anti-inflammatory and antioxidant effects. The aim of this study was to explore the protective effects of pioglitazone against IRI-induced AKI. Pathogen-free Sprague-Dawley (SD) rats were arbitrarily divided into four groups: Sham operation group Control (CON) group, CON + Pio group, I/R + Saline group, and I/R + Pio group. In addition, HK-2 cells were subjected to hypoxia and reoxygenation to develop an H/R model for investigation of the protective mechanism of Pio. Pretreatment with pioglitazone in the model rats reduced urea nitrogen and creatinine levels, histopathological scores, and cytotoxicity after IRI. Pioglitazone treatment significantly attenuated renal cell apoptosis, decreased cytotoxicity, increased Bcl-2 expression, and downregulated Bax expression. Besides, the levels of ROS and inflammatory factors, including NLRP3, ASC, pro-IL-1ß, pro-caspase-1, cleaved-caspase-1, TNF-α, IL-6, and IL-1ß, in I/R rats and H/R cells were normalized by the pioglitazone treatment. Pioglitazone improved IRI-induced AKI by attenuating oxidative stress and NLRP3 inflammasome activation. Therefore, pioglitazone has the potential to serve as a novel agent for renal IRI treatment and prevention.


Subject(s)
Acute Kidney Injury , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Pioglitazone , Rats, Sprague-Dawley , Reperfusion Injury , Pioglitazone/pharmacology , Reperfusion Injury/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Oxidative Stress/drug effects , Inflammasomes/metabolism , Animals , Humans , Male , Disease Models, Animal , Rats , Apoptosis/drug effects , Antioxidants/pharmacology , Cell Line
3.
Food Chem X ; 19: 100851, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780255

ABSTRACT

The early symptoms of cork spot disorder in 'Akizuki' pear (Pyrus pyrifolia Nakai) are challenging to distinguish from those in healthy fruits, hindering early identification in production. In this study, samples of cork-browned 'Akizuki' pears, asymptomatic fruits and healthy fruits were examined to determine the content of relevant mineral elements. A micro near-infrared spectrometer collected spectral information, and various pretreatment methods were applied to the near-infrared spectral data. Support vector machine (SVM) modelling using the original data achieved the highest overall recognition accuracy of 84.65% and an F1 value of 84.06%. For identifying fruits without cork spot disease, Autokeras modelled data processed with the SG method, achieving the best accuracy of 90%. These findings establish a reliable basis for the early identification and diagnosis of cork spot disorder in 'Akizuki' pear, enhancing pear production management.

4.
Front Immunol ; 14: 1197011, 2023.
Article in English | MEDLINE | ID: mdl-37383233

ABSTRACT

Conventional therapy for kidney renal clear cell carcinoma (KIRC) is unpromising. The tumor microenvironment (TME) is intimately linked to the invasiveness of a variety of tumor forms, including KIRC. The purpose of this research is to establish the prognostic and immune-related significance of dihydrolipoamide branched chain transacylase E2 (DBT) in individuals with KIRC. In this investigation, we discovered that DBT expression was down-regulated in a range of human malignancies, and low DBT expression in KIRC was linked to higher-level clinicopathological characteristics as well as a poor prognosis for KIRC patients. Based on the findings of univariate and multivariate Cox regression analyses, DBT might be employed as an independent prognostic factor in KIRC patients. Furthermore, we developed a nomogram to better investigate DBT's predictive usefulness. To confirm DBT expression, we examined KIRC cell lines using RT-qPCR and Western blotting. We also examined the role of DBT in KIRC using colony formation, CCK-8, EdU, transwell, and wound healing assays. We discovered that plasmid-mediated overexpression of DBT in KIRC cells slowed cell proliferation and decreased migration and invasion. Multiple enrichment analyses revealed that DBT may be involved in processes and pathways related to immunotherapy and drug metabolism. We computed the immune infiltration score and discovered that the immunological score and the ESTIMATE score were both greater in the DBT low expression group. According to the CIBERSORT algorithm, DBT seems to promote anti-cancer immune responses in KIRC by activating M1 macrophages, mast cells, and dendritic cells while inhibiting regulatory T cells. Finally, in KIRC, DBT expression was found to be highly linked to immunological checkpoints, targeted medicines, and immunotherapeutic agents. Our findings suggest that DBT is a distinct predictive biomarker for KIRC patients, playing a significant role in the TME of KIRC and serving as a reference for the selection of targeted treatment and immunotherapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Algorithms , Biological Assay , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/therapy , Immunotherapy , Kidney Neoplasms/genetics , Tumor Microenvironment
5.
Plant Dis ; 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36802292

ABSTRACT

Pear (Pyrus L.) is an important fruit tree in China, which has the largest cultivation area and yield in the world (Jia et al. 2021). In June 2022, brown spot symptoms were observed on 'Huanghua' pear (Pyrus pyrifolia Nakai, cv. Huanghua) leaves in the germplasm garden of Anhui Agricultural University (High Tech Agricultural Garden), Anhui, Hefei, China. The disease incidence was approximately 40% according to the percentage of diseased leaves among 300 leaves (50 leaves each were obtained from 6 plants). Initially, small, brown, round to oval lesions appeared on the leaves, the spots were gray in the central, and surrounded by brown to black margins. These spots rapidly enlarged, eventually causing abnormal leaf defoliation. To isolate the brown spot pathogen, symptomatic leaves were harvested, washed with sterile water, surface-sterilized with 75% ethanol for 20 s, and washed 3-4 times with sterile water. Leaf fragments were placed onto PDA medium and incubated at 25°C for 7 days to obtain isolates. The colonies exhibited white to pale gray aerial mycelium and reached a diameter of 62 mm after 7 days of incubation. Conidiogenous cells were characterized as phialides, and exhibited a doliform to ampulliform shape. Conidia displayed various shapes and sizes, ranging from subglobose to oval or obtuse, with thin walls, aseptate hyphae, and a smooth surface. They measured 4.2-7.9 × 3.1-5.5 µm in diameter. These morphologies were similar to Nothophoma quercina as reported previously (Bai et al. 2016; Kazerooni et al. 2021). For molecular analysis, the internal transcribed spacers (ITS), beta-tubulin (TUB2), and actin (ACT) regions were amplified using the primers ITS1/ITS4, Bt2a/Bt2b, and ACT-512F/ACT-783R respectively. The sequences of ITS, TUB2, and ACT were deposited in GenBank (accession numbers: OP554217, OP595395, and OP595396, respectively). A nucleotide blast search revealed high homology with N. quercina sequences: MH635156 (ITS: 541/541, 100%), MW672036.1 (TUB2: 343/346, 99%), FJ426914.1 (ACT: 242/262, 92%). A phylogenetic tree was constructed with ITS, TUB2 and ACT sequences based on neighbor-joining method using MEGA-X software, which showed the highest similarity with N. quercina. To confirm the pathogenicity, the leaves of three healthy plants were sprayed with spore suspension (106 conidia/mL), whereas control leaves were prayed with sterile water. The inoculated plants were covered with plastic bags and cultured in a growth chamber (90% relative humidity) at 25°C. Typical disease symptoms appeared on the inoculated leaves after 7-10 days, whereas no symptoms were observed on the control leaves. The same pathogen was re-isolated from the diseased leaves, according with Koch's postulates. Therefore, based on morphological and phylogenetic tree analyses, we confirmed that the causal organism for brown spot disease was N. quercina fungus (Chen et al. 2015; Jiao et al. 2017). To our knowledge, this is the first report of brown spot disease caused by N. quercina on 'Huanghua' pear leaves in China.

6.
Plants (Basel) ; 13(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38202332

ABSTRACT

Cold stress is a prominent abiotic factor that adversely affects the growth and yield of pears, consequently restricting the cultivation range and resulting in substantial economic losses for the pear industry. Basic region-leucine zipper (bZIP) transcription factors are widely involved in multiple physiological and biochemical activities of plants, particularly in response to cold stress. In this study, the responsiveness of PbbZIP11 in pear to cold stress was investigated, and its role was explored by using pear callus and Arabidopsis thaliana. The findings revealed that overexpression of PbbZIP11 enhanced the tolerance of pear callus and Arabidopsis thaliana to cold stress. The antioxidant enzyme activities of transgenic plants were enhanced and the expression of C-repeat binding transcription factor (CBF) genes was increased as compared to wild-type plants. To better understand the biological function of PbbZIP11, mRNAs were isolated from overexpressed and wild-type Arabidopsis thaliana after cold stress for whole-genome sequencing. The results showed that the expression of some CBF downstream target genes changed after exposure to cold stress. The results suggested that the PbbZIP11 gene could participate in cold-stress signaling through the CBF-dependent pathway, which provides a theoretical basis for the PbbZIP11-mediated response to cold stress and for the genetic breeding of pear varieties with low-temperature tolerance.

7.
Sci Rep ; 12(1): 21386, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496537

ABSTRACT

Bladder cancer (BC) is the most common malignant tumour of the urinary system and one of the leading causes of cancer-related death. Cuproptosis is a novel form of programmed cell death, and its mechanism in tumours remains unclear. This study aimed to establish the prognostic signatures of cuproptosis-related lncRNAs and determine their clinical prognostic value. RNA sequencing data from The Cancer Genome Atlas were used to detect the expression levels of cuproptosis-related genes in BC. Cuproptosis-related lncRNAs linked to survival were identified using co-expression and univariate Cox regression. Furthermore, consensus cluster analysis divided the lncRNAs into two subtypes. Subsequently, we established a signature model consisting of seven cuproptosis-related lncRNAs (AC073534.2, AC021321.1, HYI-AS1, PPP1R26-AS1, AC010328.1, AC012568.1 and MIR4435-2Hg) using least absolute shrinkage and selection operator regression. Survival analysis based on risk score showed that the overall survival and progression-free survival of patients in the high-risk group were worse than those in the low-risk group. Multivariate Cox analysis demonstrated the independent prognostic potential of this signature model for patients with BC. Moreover, age and clinical stage were also significantly correlated with prognosis. The constructed nomogram plots revealed good predictive power for the prognosis of patients with BC and were validated using calibration plots. Additionally, enrichment analysis, Single sample gene set enrichment analysis and immune infiltration abundance analysis revealed significant differences in immune infiltration between the two risk groups, with high levels of immune cell subset infiltrations observed in the high-risk group accompanied by various immune pathway activation. Moreover, almost all the immune checkpoint genes showed high expression levels in the high-risk group. Moreover, TIDE analysis suggested that the high-risk group was more responsive to immunotherapy. Finally, eight drugs with low IC50 values were screened, which may prove to be beneficial for patients in the high-risk group.


Subject(s)
Apoptosis , RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Immunotherapy , Prognosis , Risk Factors , RNA, Long Noncoding/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy , Copper
8.
Foods ; 11(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36429233

ABSTRACT

It has been proved that the imbalance of the proportion of elements of 'Huangguan' pears in the pulp and peel, especially calcium, boron and potassium, may be important factors that can seriously affect the pears' appearance quality and economic benefits. The objective of this study was to predict the content of calcium, boron and potassium in the pulp and peel of 'Huangguan' pears nondestructively and conveniently by using near-infrared spectroscopy (900-1700 nm) technology. Firstly, 12 algorithms were used to preprocess the original spectral data. Then, based on the original and preprocessed spectral data, full-band prediction models were established by using Partial Least Squares Regression and Gradient Boosting Regression Tree. Finally, the characteristic wavelengths were extracted by Genetic Algorithms to establish the characteristic wavelength prediction models. According to the prediction results, the value of the determination coefficient of the prediction sets of the best prediction models for the three elements all reached ideal levels, and the values of their Relative analysis error also showed high levels. Therefore, the micro near-infrared spectrometer based on machine learning can predict the content of calcium, boron and potassium in the pulp and peel of 'Huangguan' pears accurately and quickly. The results also provide an important scientific theoretical basis for further research on the degradation of the quality of 'Huangguan' pears caused by a lack of nutrients.

9.
Brain Res Bull ; 190: 42-49, 2022 11.
Article in English | MEDLINE | ID: mdl-36113681

ABSTRACT

The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.


Subject(s)
Adenosine Triphosphate , Brain Ischemia , Humans , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X/metabolism , Microglia/metabolism , Brain Ischemia/metabolism , Neurons , Cerebral Infarction , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X4/metabolism
10.
Front Plant Sci ; 13: 910938, 2022.
Article in English | MEDLINE | ID: mdl-35755695

ABSTRACT

Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.

11.
Front Cell Dev Biol ; 10: 861327, 2022.
Article in English | MEDLINE | ID: mdl-35573679

ABSTRACT

Objective: The aim of this study was to investigate gender differences after renal ischemia-reperfusion injury in mice and the effects of androgen receptor (AR) and microRNA-21 (miR-21) on apoptosis in renal ischemia-reperfusion injury. Methods: Renal ischemia-reperfusion injury model was induced by 45 min of bilateral renal artery ischemia and reperfusion. BALB/c mice were randomly divided into groups according to different experimental protocols. The levels of renal function were evaluated by serum creatinine and blood urea nitrogen. TUNEL staining was used to analyze the pathological changes and apoptosis levels of renal tissue, and western blotting and qPCR were used to detect the expressions of miR-21, AR, PDCD4 and caspase3. Results: After renal ischemia-reperfusion injury in mice with different genders, the levels of plasma urea nitrogen and creatinine in female and male mice increased, the histopathological score increased, and TUNEL staining in renal tissue indicated increased apoptosis. The expressions of miR-21, PDCD4, and active caspase-3 protein were up-regulated. The above trend was more pronounced in male mice, and a significant decrease in AR mRNA expression was detected. Silencing the expression of AR aggravated the decline of renal function and renal tubular injury after renal ischemia in mice. The expression of PDCD4 and active caspase-3 increased, while the level of miR-21 was correspondingly decreased. Up-regulation of miR-21 expression by pre-miR-21 could negatively regulate PDCD4, reduce the expression level of active caspase3, and yet induce AR expression accordingly. MiR-21 alleviated renal ischemia-reperfusion injury by inhibiting renal tubular epithelial cell apoptosis. The effect of antagomiR-21 was the opposite, which aggravated renal ischemia-reperfusion injury. Conclusion: There are gender differences in renal ischemia-reperfusion injury. Male mice are more susceptible to renal ischemia-reperfusion injury than female. Silencing AR expression or down-regulating the level of miR-21 can promote the expression of PDCD4 and apoptosis protein caspase3, thereby aggravating ischemia-reperfusion injury in mice. The protective effect of AR and miR-21 in renal ischemia-reperfusion injury has a certain synergy.

12.
BMC Microbiol ; 22(1): 18, 2022 01 08.
Article in English | MEDLINE | ID: mdl-34996363

ABSTRACT

BACKGROUND: Fe-deficiency chlorosis (FDC) of Asian pear plants is widespread, but little is known about the association between the microbial communities in the rhizosphere soil and leaf chlorosis. The leaf mineral concentration, leaf subcellular structure, soil physiochemical properties, and bacterial species community and distribution had been analysed to gain insights into the FDC in Asian pear plant. RESULTS: The total Fe in leaves with Fe-deficiency was positively correlated with total K, Mg, S, Cu, Zn, Mo and Cl contents, but no differences of available Fe (AFe) were detected between the rhizosphere soil of chlorotic and normal plants. Degraded ribosomes and degraded thylakloid stacks in chloroplast were observed in chlorotic leaves. The annotated microbiome indicated that there were 5 kingdoms, 52 phyla, 94 classes, 206 orders, 404 families, 1,161 genera, and 3,043 species in the rhizosphere soil of chlorotic plants; it was one phylum less and one order, 11 families, 59 genera, and 313 species more than in that of normal plant. Bacterial community and distribution patterns in the rhizosphere soil of chlorotic plants were distinct from those of normal plants and the relative abundance and microbiome diversity were more stable in the rhizosphere soils of normal than in chlorotic plants. Three (Nitrospira defluvii, Gemmatirosa kalamazoonesis, and Sulfuricella denitrificans) of the top five species (N. defluvii, G. kalamazoonesis, S. denitrificans, Candidatus Nitrosoarchaeum koreensis, and Candidatus Koribacter versatilis). were the identical and aerobic in both rhizosphere soils, but their relative abundance decreased by 48, 37, and 22%, respectively, and two of them (G. aurantiaca and Ca. S. usitatus) were substituted by an ammonia-oxidizing soil archaeon, Ca. N. koreensis and a nitrite and nitrate reduction related species, Ca. K. versatilis in that of chlorotic plants, which indicated the adverse soil aeration in the rhizosphere soil of chlorotic plants. A water-impermeable tables was found to reduce the soil aeration, inhibit root growth, and cause some absorption root death from infection by Fusarium solani. CONCLUSIONS: It was waterlogging or/and poor drainage of the soil may inhibit Fe uptake not the amounts of AFe in the rhizosphere soil of chlorotic plants that caused FDC in this study.


Subject(s)
Microbiota , Plant Necrosis and Chlorosis/microbiology , Pyrus/microbiology , Rhizosphere , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/metabolism , Gene Ontology , Iron/analysis , Iron/metabolism , Metagenomics , Minerals/analysis , Minerals/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/ultrastructure , Plant Roots/growth & development , Plant Roots/microbiology , Pyrus/metabolism , Pyrus/ultrastructure , Soil/chemistry , Soil Microbiology , Water/analysis
13.
BMC Plant Biol ; 21(1): 321, 2021 Jul 03.
Article in English | MEDLINE | ID: mdl-34217211

ABSTRACT

BACKGROUND: Browning spot (BS) disorders seriously affect the appearance quality of 'Huangguan' pear and cause economic losses. Many studies on BS have mainly focused on physiological and biochemical aspects, and the molecular mechanism remains unclear. RESULTS: In the present study, the structural characteristics of 'Huangguan' pear with BS were observed via scanning electron microscopy (SEM), the water loss and brown spots were evaluated, and transcriptomic and metabolomics analyses were conducted to reveal the molecular mechanism underlying 'Huangguan' pear skin browning disorder. The results showed that the occurrence of BS was accompanied by a decrease in the wax layer and an increase in lignified cells. Genes related to wax biosynthesis were downregulated in BS, resulting in a decrease in the wax layer in BS. Genes related to lignin were upregulated at the transcriptional level, resulting in upregulation of metabolites related to phenylpropanoid biosynthesis. Expression of calcium-related genes were upregulated in BS. Cold-induced genes may represent the key genes that induce the formation of BS. In addition, the results demonstrated that exogenous NaH2PO4·2H2O and ABA treatment could inhibit the incidence of BS during harvest and storage time by increasing wax-related genes and calcium-related genes expression and increasing plant resistance, whereas the transcriptomics results indicated that GA3 may accelerate the incidence and index of BS. CONCLUSIONS: The results of this study indicate a molecular mechanism that could explain BS formation and elucidate the effects of different treatments on the incidence and molecular regulation of BS.


Subject(s)
Metabolomics , Plant Diseases/genetics , Pyrus/genetics , Pyrus/metabolism , Transcriptome/genetics , Abscisic Acid/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Gibberellins/pharmacology , Metabolome/genetics , Models, Biological , Phenotype , Pyrus/drug effects , Pyrus/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptome/drug effects
14.
Am J Transl Res ; 11(9): 5611-5622, 2019.
Article in English | MEDLINE | ID: mdl-31632533

ABSTRACT

The function of androgen receptor (AR)/microRNA-21 (miR-21) axis in tumor development was well investigated. However, the roles of the axis performed in hypoxia/reoxygenation (H/R)-induced apoptosis of mouse renal tubular epithelial cells (RTECs) is not known. In this study, H/R-induced apoptosis of RTECs was established to evaluate the role of miR-21-AR axis. The protocol of 8-h hypoxia and 24-h reoxygenation were selected to produce H/R injury. Our data showed that H/R increased miR-21 and caspase-3 expression, reduced the expression AR and programmed cell death protein 4 (PDCD4). By contrast, AR-siRNA increased H/R-induced apoptosis, and promoted caspase-3 expression, but reduced PDCD4 expression (vs. H/R group). pre-miR-21 reduced, while antagomiR-21 promoted apoptosis and PDCD4 expression in H/R-induced RTECs. Moreover, pre-miR-21 promoted, while antagomiR-21 reduced caspase-3 expression in H/R-induced RTECs. Together, H/R increased miRNA-21 and reduced AR expression, then regulating PDCD4- and caspase-3-dependent apoptosis. AR/miR-21 axis could be a potential therapeutic target for the kidney ischemia injury.

15.
Eur J Pharmacol ; 863: 172695, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31560869

ABSTRACT

Pioglitazone (Pio), a peroxisome proliferators-activated receptor-γ (PPAR-γ) agonist, may protect against renal ischemia/reperfusion injury (IRI). Recent studies have shown that autophagy plays a protective role in IRI. We aimed to evaluate whether autophagy was involved in pioglitazone-induced protection during tubular cell hypoxia/reoxygenation (H/R). Normal rat kidney proximal tubular cells NRK-52E were subjected to H/R injury, and they were divided into 6 groups: control, control + Pio, H/R, H/R + Pio, H/R + MA, H/R + MA + Pio. Autophagy-related proteins were primarily assessed by Western blot and TUNEL was performed to assess cell apoptosis. Our results showed pioglitazone pretreatment had a cytoprotective effect against H/R injury. The H/R + Pio group had an increased ratio of LC3-II to LC3-I and increased Beclin-1, decreased p62. Pioglitazone also reduced apoptosis and enhanced cell survival while inducing autophagy. Correspondingly, autophagy inhibition with 3-MA alleviated this protective effect. Furthermore, pioglitazone-induced enhancement of autophagy could be related to increased AMP-activated protein kinase (AMPK) phosphorylation and decreased Mammalian target of rapamycin (mTOR) phosphorylation. Thus, pioglitazone pretreatment protects against H/R injury by enhancting autophagy through the AMPK-mTOR signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/drug effects , Kidney Tubules/cytology , Oxygen/metabolism , Pioglitazone/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Hypoxia/drug effects , Cell Line , Cytoprotection/drug effects , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Rats
16.
J Cell Mol Med ; 23(1): 29-38, 2019 01.
Article in English | MEDLINE | ID: mdl-30565858

ABSTRACT

This study was designed to detecting the influences of lncRNA MEG3 in prostate cancer. Aberrant lncRNAs expression profiles of prostate cancer were screened by microarray analysis. The qRT-PCR and Western blot were employed to investigating the expression levels of lncRNA MEG3, miR-9-5p and QKI-5. The luciferase reporter assay was utilized to testifying the interactions relationship among these molecules. Applying CCK-8 assay, wound healing assay, transwell assay and flow cytometry in turn, the cell proliferation, migration and invasion abilities as well as apoptosis were measured respectively. LncRNA MEG3 was a down-regulated lncRNA in prostate cancer tissues and cells and could inhibit the expression of miR-9-5p, whereas miR-9-5p down-regulated QKI-5 expression. Overexpressed MEG3 and QKI-5 could decrease the abilities of proliferation, migration and invasion in prostate cancer cells effectively and increased the apoptosis rate. On the contrary, miR-9-5p mimics presented an opposite tendency in prostate cancer cells. Furthermore, MEG3 inhibited tumour growth and up-regulated expression of QKI-5 in vivo. LncRNA MEG3 was a down-regulated lncRNA in prostate cancer and impacted the abilities of cell proliferation, migration and invasion, and cell apoptosis rate, this regulation relied on regulating miR-9-5p and its targeting gene QKI-5.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Prostatic Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA-Binding Proteins/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Expression Profiling/methods , Humans , Male , Mice, Inbred BALB C , Mice, Nude , PC-3 Cells , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , RNA-Binding Proteins/metabolism , Tumor Burden/genetics , Xenograft Model Antitumor Assays/methods
17.
Front Pharmacol ; 9: 851, 2018.
Article in English | MEDLINE | ID: mdl-30127742

ABSTRACT

Renal ischemia-reperfusion injury (IRI) is a major cause of acute renal failure. Our previous studies have shown that pioglitazone, a peroxisome proliferators-activated receptor (PPAR)-γ agonist used in type 2 diabetes, protects against renal IRI; however, the molecular mechanism underlying the renoprotective effects of pioglitazone is still unclear. In this study, we investigated the role of AMP-activated protein kinase (AMPK)-regulated autophagy in renoprotection by pioglitazone in IRI. To investigate whether pioglitazone protects renal cells from IRI, an in vivo renal IRI model was used. Cell apoptosis in the kidneys was determined by TUNEL staining. Western blotting was used to determine the expression of AMPK, autophagy-related proteins, and caspase-3/8 proteins in the kidneys. In a rat model of IRI, pioglitazone decreased the increased serum creatinine and urea nitrogen, improved renal histological score, and decreased the cell injury. Pioglitazone also increased AMPK phosphorylation, inhibited p62 and cleaved caspase-3/8 proteins, and activated autophagy-related proteins LC3 II and Beclin-1 in the kidneys of IRI rats. Moreover, GW9662, as a selective inhibitor of PPAR-γ, inhibited the protective effects of pioglitazone. These results suggest that pioglitazone exerts its protective effects in renal IRI via activation of an AMPK-regulated autophagy signaling pathway.

18.
Genet Mol Biol ; 41(1): 137-144, 2018.
Article in English | MEDLINE | ID: mdl-29658971

ABSTRACT

The plant genes encoding ABCGs that have been identified to date play a role in suberin formation in response to abiotic and biotic stress. In the present study, 80 ABCG genes were identified in 'Dangshansuli' Chinese white pear and designated as PbABCGs. Based on the structural characteristics and phylogenetic analysis, the PbABCG family genes could be classified into seven main groups: classes A-G. Segmental and dispersed duplications were the primary forces underlying the PbABCG gene family expansion in 'Dangshansuli' pear. Most of the PbABCG duplicated gene pairs date to the recent whole-genome duplication that occurred 30~45 million years ago. Purifying selection has also played a critical role in the evolution of the ABCG genes. Ten PbABCG genes screened in the transcriptome of 'Dangshansuli' pear and its russet mutant 'Xiusu' were validated, and the expression levels of the PbABCG genes exhibited significant differences at different stages. The results presented here will undoubtedly be useful for better understanding of the complexity of the PbABCG gene family and will facilitate the functional characterization of suberin formation in the russet mutant.

19.
Genet. mol. biol ; 41(1): 137-144, Jan.-Mar. 2018. graf
Article in English | LILACS | ID: biblio-892462

ABSTRACT

Abstract The plant genes encoding ABCGs that have been identified to date play a role in suberin formation in response to abiotic and biotic stress. In the present study, 80 ABCG genes were identified in 'Dangshansuli' Chinese white pear and designated as PbABCGs. Based on the structural characteristics and phylogenetic analysis, the PbABCG family genes could be classified into seven main groups: classes A-G. Segmental and dispersed duplications were the primary forces underlying the PbABCG gene family expansion in 'Dangshansuli' pear. Most of the PbABCG duplicated gene pairs date to the recent whole-genome duplication that occurred 30~45 million years ago. Purifying selection has also played a critical role in the evolution of the ABCG genes. Ten PbABCG genes screened in the transcriptome of 'Dangshansuli' pear and its russet mutant 'Xiusu' were validated, and the expression levels of the PbABCG genes exhibited significant differences at different stages. The results presented here will undoubtedly be useful for better understanding of the complexity of the PbABCG gene family and will facilitate the functional characterization of suberin formation in the russet mutant.

20.
Plant Cell Rep ; 35(9): 1841-52, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27255339

ABSTRACT

KEY MESSAGE: Differential genes of suberin, polyamine and transcription factors in transcriptome sequences and the contents of H 2 O 2 , spermidine, spermine, and putrescine changed significantly after treating with MGBG. Russeting is a commercially important process that restores the control of water loss through the skin via the formation of a waterproofing periderm just beneath the microcracked skin of pear primary fruit. A spontaneous russet skin mutant, the yellow-green 'Dangshansuli' pear, has been identified. To understand the role of polyamines in the formation of the russet skin of the mutant-type (MT) pear, it was treated with methylglyoxal-bis-(guanylhydrazone) (MGBG) for 4 weeks after full bloom. One week later, differentially expressed genes among the wild-type (WT), MT, and MGBG-treated MT pears were screened, hydrogen peroxide (H2O2) was localized using CeCl3, and the contents of H2O2 and polyamine were measured. A total of 57,086,772, 61,240,014, and 67,919,420 successful reads were generated from the transcriptomes of WT, MT, and MGBG-treated MT, with average unigene lengths of 701, 720, and 735 bp, respectively. Differentially expressed genes involved in polyamine metabolism and suberin synthesis were screened in 'Dangshansuli' and in the mutant libraries, and their relative expression was found to be significantly altered after treatment with MGBG, which was confirmed by real-time PCR. The expression patterns of differentially expressed transcription factors were identified and were found to be similar to those of the polyamine- and suberin-related genes. The results indicated that the H2O2 generated during polyamine metabolism might contribute to russet formation on the exocarp of the mutant pear. Furthermore, the contents of H2O2, spermidine, spermine, and putrescine and H2O2 localization provided a comprehensive transcriptomic view of russet formation in the mutant pear.


Subject(s)
Fruit/growth & development , Fruit/metabolism , Mutation/genetics , Polyamines/metabolism , Pyrus/growth & development , Pyrus/metabolism , Cluster Analysis , Fruit/drug effects , Fruit/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hydrogen Peroxide/metabolism , Molecular Sequence Annotation , Plant Proteins/genetics , Plant Proteins/metabolism , Pyrus/drug effects , Pyrus/genetics , Pyruvaldehyde/pharmacology , Reproducibility of Results , Sequence Analysis, RNA , Transcription Factors/metabolism , Transcriptome/drug effects , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...