Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(41): 48551-48563, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37788362

ABSTRACT

Porous skeletons play a crucial role in various applications. Their fundamental significance stems from their remarkable surface area and capacity to enhance mass adsorption and transport. Freeze-casting is a commonly utilized methodology for the production of porous skeletons featuring vertically aligned channels. Nevertheless, the resultant single-oriented skeleton displays anisotropic mass transfer characteristics and suboptimal mechanical properties. Our investigation was motivated by the intricate microstructures observed in botanical organisms, leading us to devise an advanced freeze-casting methodology. A novel central-radial skeleton with significantly enhanced capabilities has been successfully engineered. The central-radial architecture demonstrates superior refinement and uniformity in its pore structure, featuring an axial mass transfer axis and meticulously arranged radial channels. This microstructure endows the porous skeleton with a higher compression resilience, superior adsorption rate, and structural maintenance capacity. Through a rigorous examination of the thermal conductivity of skeleton-filled composites coupled with comprehensive COMSOL simulations, the exceptional characteristics of this unique structural arrangement have been definitively ascertained. Furthermore, the efficacy of implementing this skeleton in chip cooling and photothermal conversion has been convincingly substantiated. Our pioneering method of microstructure preparation, employing freeze-casting, holds immense potential in expanding its applicability and inspiring innovative concepts for the advancement of novel structures.

2.
ACS Appl Mater Interfaces ; 12(21): 24298-24307, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32348118

ABSTRACT

High-performance thermal management materials are essential in miniaturized, highly integrated, and high-power modern electronics for heat dissipation. In this context, the large interface thermal resistance (ITR) that occurs between fillers and the organic matrix in polymer-based nanocomposites greatly limits their thermal conductive performance. Herein, through-plane direction aligned three-dimensional (3D) MXene/silver (Ag) aerogels are designed as heat transferring skeletons for epoxy nanocomposites. Ag nanoparticles (NPs) were in situ decorated on exfoliated MXene nanosheets to ensure good contact, and subsequent welding of ice-templated MXene/Ag nanofillers at low temperature of ∼200 °C reduced contact resistance between individual MXene sheets. Monte Carlo simulations suggest that thermal interficial resistance (R0) of the MXene/Ag-epoxy nanocomposite was 4.5 × 10-7 m2 W-1 K-1, which was less than that of the MXene-epoxy nanocomposite (Rc = 5.2 × 10-7 m2 W-1 K-1). Furthermore, a large-scale atomic/molecular massively parallel simulator was employed to calculate the interfacial resistance. It was found that RMXene = 2.4 × 10-9 m2 K W-1, and RMXene-Ag = 2.0 ×10-9 m2 K W-1, respectively, indicating that the Ag NP enhanced the interfacial heat transport. At a relatively low loading of 15.1 vol %, through-plane thermal conductivity reached a value as high as 2.65 W m-1 K-1, which is 1225 % higher than that of pure epoxy resin. Furthermore, MXene/Ag-epoxy nanocomposite film exhibits an impressive thermal conductive property when applied on a Millet 8 and Dell computer for heat dissipation.

3.
ACS Appl Mater Interfaces ; 12(2): 2892-2902, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31860260

ABSTRACT

Conventional polymer composites normally suffer from undesired thermal conductivity enhancement which has hampered the development of modern electronics as they face a stricter heat dissipating requirement. It is still challenging to achieve satisfactory thermal conductivity enhancement with reasonable mechanical properties. Herein, we present a three-dimensional (3D), lightweight, and mechanically strong boron nitride (BN)-silicon carbide (SiC) skeleton with aligned thermal pathways via the combination of ice-templated assembly and high-temperature sintering. The sintering has introduced atomic-level coupling at the BN-SiC junction which contributes to efficient phonon transport via the newly formed borosilicate glass BCxN3-x (0 ≤ x ≤ 3) and SiCxN4-x (0 ≤ x ≤ 4) phases, leading to much lower interfacial thermal resistance. Thus, the obtained BN-SiC skeleton shows satisfactory thermal performance. The prepared 3D BN-SiC/polydimethylsiloxane (PDMS) composites exhibit a maximum through-plane thermal conductivity of 3.87 W·m-1·K-1 at a filler loading of only 8.35 vol %. The thermal conductivity enhancement efficiency reaches 220% per 1 vol % filler when compared to pure PDMS matrix, superior to other reported BN skeleton-based composites. The feature of our strategy is to allow the oriented three-dimensional skeleton to be strongly bonded by a sintered ceramic phase instead of polymer-like adhesive, namely, to improve the intrinsic thermal conductivity of the skeleton to the greatest extent. This strategy can be applied to develop novel thermal management materials that are lightweight and mechanically tough that rapidly transfer heat. It represents a new avenue to addressing the heat challenges in traditional electronic products.

4.
Nanoscale Res Lett ; 13(1): 376, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30467605

ABSTRACT

Hydrogenated graphene (HG)/hexagonal boron nitride (h-BN) heterobilayer is an ideal structure for the high-performance field effect transistor. In this paper, the carrier mobilities of HG/h-BN heterobilayer are investigated based on the first-principles calculations by considering the influence of stacking pattern between HG and h-BN, hydrogen coverage and hydrogenation pattern. With the same hydrogenation pattern, the electron mobility monotonously decreases when the hydrogen coverage increases. With the same hydrogen coverage, different hydrogenation patterns lead to significant changes of mobility. For 25% and 6.25% HGs, the µe (ΓK) of 25% pattern I is 8985.85 cm2/(V s) and of 6.25% pattern I is 23,470.98 cm2/(V s), which are much higher than other patterns. Meanwhile, the h-BN substrate affects the hole mobilities significantly, but it has limit influences on the electron mobilities. The hole mobilities of stacking patterns I and II are close to that of HG monolayer, but much lower than that of stacking patterns III and IV.

5.
Nanoscale ; 9(32): 11480-11487, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28766651

ABSTRACT

Thermal rectification can help develop modern thermal manipulation devices but has been rarely engineered. Here, we validated the nanoscale bimaterial interface-induced thermal rectification experimentally for the first time and investigated its underlying mechanism via molecular dynamics simulations. The thermal diode consists of polyamide (PA) and silicon (Si) nanowires in contact with each other. The thermal rectification ratio measured by a high-precision nanoscale experiment reached 4% with an uncertainty of <1%. The temperature has little influence on the ratio, while the decrease in contact length or increase in temperature differences can increase the ratio. The molecular dynamics simulations further confirmed the thermal rectification in the PA/Si nanowires. We found that the localized modes generally gather on the edge, and the higher extent of phonon localization is responsible for the lower thermal conductance in the thermal rectification. Our findings not only have guiding significance, but can also promote the development of interface-based solid-state thermal diodes.

6.
Phys Chem Chem Phys ; 18(48): 32952-32961, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27886317

ABSTRACT

Macro-thermal cloaking is typically produced by coordinate transformations, but this method is unsuitable for nanostructures. We designed a graphene-based nanoscale thermal cloak using a novel mechanism of phonon localization. The nanocloak in graphene was produced via the chemical functionalization of hydrogen, methyl and hydroxyl using molecular dynamics simulations. The cloaking performance was quantified by the ratio of thermal cloaking (RTC). We found that the RTC correlated with the functionalization fraction and it has a local maximum at a certain width, since the heat flux reduction in the exterior and the protected region reversed if the width was excessive. The atomic mass of the functional group also correlated with the RTC. Our simulations determined that phonon localization occurred due to sp2-to-sp3 bonding transitions, which caused the heat flux to avoid the transition region. Finally, the extent of phonon localization was related to the cloaking performance.

7.
J Chem Phys ; 145(13): 134705, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27782432

ABSTRACT

Phonon thermal transport in graphene has attracted significant interest in recent years. Phonon thermal properties of graphene are investigated by molecular dynamics simulations using the Tersoff, Tersoff-2010, REBO, and AIREBO potentials. By calculating the phonon properties and thermal conductivity of graphene, the performance of the potentials is evaluated based on comparisons with experimental data. It shows that the Tersoff-2010 and REBO display better dispersion curves for graphene than the original Tersoff and AIREBO. The Tersoff-2010 correctly provides the Γ point phonon velocities of the LA and TA branches as well as the G peak frequency with a value of 46 THz. In addition, the acoustic phonon relaxation time derived from the Tersoff-2010 satisfies the ideal relation "τ-1 ∝ ν2." It is also found that the Tersoff-2010 provides the highest graphene thermal conductivity among the used potentials, and estimates about 30.0% contribution for flexural phonons to the total thermal conductivity. By comparison, the Tersoff-2010 potential is demonstrated to be the most suitable one to describe the phonon thermal properties of graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...