Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Microbiol Spectr ; 10(6): e0241022, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36350149

ABSTRACT

Stimulation of unmyelinated C fibers, the nociceptive sensory nerves, by noxious stimuli is able to initiate host responses. Host defensive responses against respiratory syncytial virus (RSV) infection rely on the induction of a robust alpha/beta interferon (IFN-α/ß) response, which acts to restrict viral production and promote antiviral immune responses. Alveolar macrophages (AMs) are the major source of IFN-α/ß upon RSV infection. Here, we found that C fibers are involved in host defense against RSV infection. Compared to the control mice post-RSV infection, degeneration and inhibition of C fibers by blockade of transient receptor potential vanilloid 1 (TRPV1) lowered viral replication and alleviated lung inflammation. Importantly, AMs were markedly elevated in C-fiber-degenerated (KCF) mice post-RSV infection, which was associated with higher IFN-α/ß secretion as measured in bronchoalveolar lavage fluid (BALF) samples. Degeneration of C fibers contributed to the production of vasoactive intestinal peptide (VIP), which modulated AM and IFN-α/ß levels to protect against RSV infection. Collectively, these findings revealed the key role of C fibers in regulating AM and IFN-α/ß responses against RSV infection via VIP, opening the possibility for new therapeutic strategies against RSV. IMPORTANCE Despite continuous advances in medicine, safe and effective drugs against RSV infection remain elusive. As such, host-RSV interactions and host-directed therapies require further research. Unmyelinated C fibers, the nociceptive sensory nerves, play an important role in regulating the host response to virus. In the present study, from the perspective of neuroimmune interactions, we clarified that C-fiber degeneration enhanced the AM-mediated IFN-α/ß response against RSV via VIP, providing potential therapeutic targets for the treatment of RSV infection.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Animals , Mice , Macrophages, Alveolar , Nerve Fibers, Unmyelinated , Interferon-beta , Lung
2.
BMC Microbiol ; 21(1): 351, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34922455

ABSTRACT

BACKGROUND: The 2019 novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) is a current worldwide threat for which the immunological features after infection need to be investigated. The aim of this study was to establish a highly sensitive and quantitative detection method for SARS-CoV-2 IgG antibody and to compare the antibody reaction difference in patients with different disease severity. RESULTS: Recombinant SARS-CoV-2 nucleocapsid protein was expressed in Escherichia coli and purified to establish an indirect IgG ELISA detection system. The sensitivity of the ELISA was 100% with a specificity of 96.8% and a 98.3% concordance when compared to a colloidal gold kit, in addition, the sensitivity of the ELISA was 100% with a specificity of 98.9% and a 99.4% concordance when compared to a SARS-CoV-2 spike S1 protein IgG antibody ELISA kit. The increased sensitivity resulted in a higher rate of IgG antibody detection for COVID-19 patients. Moreover, the quantitative detection can be conducted with a much higher serum dilution (1:400 vs 1:10, 1:400 vs 1:100). The antibody titers of 88 patients with differing COVID-19 severity at their early convalescence ranged from 800 to 102,400, and the geometric mean titer for severe and critical cases, moderate cases, asymptomatic and mild cases was 51,203, 20,912, and 9590 respectively. CONCLUSION: The development of a highly sensitive ELISA system for the detection of SARS-CoV-2 IgG antibodies is described herein. This system enabled a quantitative study of rSARS-CoV-2-N IgG antibody titers in COVID-19 patients, the occurrence of higher IgG antibody titers were found to be correlated with more severe cases.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin G/blood , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/immunology , Child , Child, Preschool , China , Enzyme-Linked Immunosorbent Assay , Female , Humans , Infant , Male , Middle Aged , Phosphoproteins/immunology , SARS-CoV-2 , Sensitivity and Specificity , Young Adult
3.
Braz. j. infect. dis ; 23(6): 427-434, Nov.-Dec. 2019. graf
Article in English | LILACS | ID: biblio-1089313

ABSTRACT

ABSTRACT To investigate the genetic variation and molecular epidemiology characteristics of Human Respiratory Syncytial Virus (HRSV) in Guizhou Province, nasopharyngeal aspirates were collected from patients with acute respiratory infection (ARI) in Guizhou Provincial People's Hospital, from December 2017 to March 2018, and inoculated to Hep-2 cells to isolate HRSV. Cells that showed cytopathic effect (CPE) were then confirmed by indirect immunofluorescence assay and reverse transcription. The sequence of the PCR products was determined for HRSV isolates, and the genetic variation was analyzed. Out of 196 nasopharyngeal aspirate samples, HRSV were isolated in 39. The second hypervariable region at the 3' terminal of glycoprotein gene (HVR2) sequence analysis showed that subgroup A was dominant. Seventy-nine percent of the isolates belonged to subgroup A, ON1 genotype, and 21 % belonged to subgroup B, BA9 genotype, which indicates that the dominant HRSV circulating in Guizhou Province was subgroup A, genotype ON1, co-circulating with a less prevalent subgroup B, genotype BA9.


Subject(s)
Humans , Child, Preschool , Respiratory Tract Infections/virology , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus Infections/virology , Phylogeny , Respiratory Tract Infections/epidemiology , China/epidemiology , Polymerase Chain Reaction , Sequence Analysis, DNA , Respiratory Syncytial Virus Infections/epidemiology , Molecular Epidemiology , Genotype , Nasal Cavity/virology
4.
Braz J Infect Dis ; 23(6): 427-434, 2019.
Article in English | MEDLINE | ID: mdl-31734172

ABSTRACT

To investigate the genetic variation and molecular epidemiology characteristics of Human Respiratory Syncytial Virus (HRSV) in Guizhou Province, nasopharyngeal aspirates were collected from patients with acute respiratory infection (ARI) in Guizhou Provincial People's Hospital, from December 2017 to March 2018, and inoculated to Hep-2 cells to isolate HRSV. Cells that showed cytopathic effect (CPE) were then confirmed by indirect immunofluorescence assay and reverse transcription. The sequence of the PCR products was determined for HRSV isolates, and the genetic variation was analyzed. Out of 196 nasopharyngeal aspirate samples, HRSV were isolated in 39. The second hypervariable region at the 3' terminal of glycoprotein gene (HVR2) sequence analysis showed that subgroup A was dominant. Seventy-nine percent of the isolates belonged to subgroup A, ON1 genotype, and 21 % belonged to subgroup B, BA9 genotype, which indicates that the dominant HRSV circulating in Guizhou Province was subgroup A, genotype ON1, co-circulating with a less prevalent subgroup B, genotype BA9.


Subject(s)
Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/virology , Child, Preschool , China/epidemiology , Genotype , Humans , Molecular Epidemiology , Nasal Cavity/virology , Phylogeny , Polymerase Chain Reaction , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Tract Infections/epidemiology , Sequence Analysis, DNA
5.
BMC Infect Dis ; 19(1): 36, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30626350

ABSTRACT

BACKGROUND: Human adenovirus type 3 (HAdV-3) and 7 (HAdV-7) cause significant morbidity and develop severe complications and long-term pulmonary sequelae in children. However, epidemiologic reports have suggested that nearly all highly severe or fatal adenoviral diseases in children are associated with HAdV-7 rather than HAdV-3. Here, we conduct in-depth investigations to confirm and extend these findings through a comprehensive series of assays in vitro and in vivo as well as clinical correlates. METHODS: A total of 8248 nasopharyngeal aspirate (NPA) samples were collected from hospitalized children with acute respiratory infections in Children's Hospital of Chongqing Medical University from June 2009 to May 2015. Among 289 samples that tested positive for HAdVs, clinical data of 258 cases of HAdV-3 (127) and HAdV-7 (131) infections were analyzed. All HAdV-positive samples were classified by sequencing the hexon and fiber genes, and compared with clinical data and virological assays. We also performed in vitro assays of virus quantification, viral growth kinetics, competitive fitness, cytotoxicity and C3a assay of the two strains. Mouse adenovirus model was used to evaluate acute inflammatory responses. RESULTS: Clinical characteristics revealed that HAdV-7 infection caused more severe pneumonia, toxic encephalopathy, respiratory failure, longer mean hospitalization, significantly lower white blood cell (WBC) and platelet counts, compared to those of HAdV-3. In cell culture, HAdV-7 replicated at a higher level than HAdV-3, and viral fitness showed significant differences as well. HAdV-7 also exhibited higher C3a production and cytotoxic effects, and HAdV-7-infected mice showed aggravated pathology and higher pulmonary virus loads, compared to HAdV-3-infected mice. Macrophages in BALF remained markedly high during infection, with concomitant increase in pro-inflammatory cytokines (TNF-α, IL-1ß, IFN-γ, and IL-6), compared HAdV-3 infection. CONCLUSIONS: These results document that HAdV-7 replicates more robustly than HAdV-3, and promotes an exacerbated cytokine response, causing a more severe airway inflammation. The findings merit further mechanistic studies that offer the pediatricians an informed decision to proceed with early diagnosis and treatment of HAdV-7 infection.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Respiratory Tract Infections , Adenoviridae Infections/epidemiology , Adenoviridae Infections/virology , Adenoviruses, Human/genetics , Adenoviruses, Human/pathogenicity , Child , Cohort Studies , Hospitalization , Humans , Nasopharynx/virology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology
6.
Biochem Biophys Res Commun ; 501(1): 1-8, 2018 06 18.
Article in English | MEDLINE | ID: mdl-29571731

ABSTRACT

Human adenovirus (HAdV) is a common respiratory pathogen in children, with no safe and effective treatment currently available. HAdV type 7 (HAdV-7), in particular, causes severe pediatric pneumonia with a high incidence of sequelae and mortality. Clinical data and animal experiments suggest that HAdV-7-induced pneumonia promotes cell necrosis, releasing a large number of inflammatory mediators. In recent years, the high mobility group box-1 (HMGB1) protein, released by necrotic cells, has been shown to play important roles in several viral infections. Here, we show that HMGB1 levels gradually increased in the media supernatants of HAdV-7 infected A549 cells, starting at 12 h post-infection. In vivo, HMGB1 levels in BALF and mRNA levels in lung tissues significantly increased after 3 days of HAdV-7 infection. Among the HMGB1 receptor genes, TLR-4 and TLR-9 expression increased, and so did the receptor for advanced glycation end-products (RAGE). Interestingly, NF-κB levels also increased concomitantly. Conversely, when HMGB1 was blocked, the pathological scores from lung tissues, inflammatory mediator levels, and viral copy number all were reduced significantly; in addition, HMGB1-related signaling pathway molecules, namely TLR-4, TLR-9, RAGE, and NF-κB were also reduced. We conclude that HMGB1 promotes HAdV-7 replication and signals through TLR-4, TLR-9, and RAGE receptors to activate NF-κB, stimulating the release of inflammatory mediators and contributing to adenoviral pathology. Thus, HMGB1 could be used as a therapeutic target in HAdV-7 infection.


Subject(s)
Adenovirus Infections, Human/etiology , Adenoviruses, Human/pathogenicity , HMGB1 Protein/metabolism , Pneumonia, Viral/etiology , A549 Cells , Adenovirus Infections, Human/genetics , Adenovirus Infections, Human/metabolism , Adenoviruses, Human/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Disease Models, Animal , Female , HMGB1 Protein/antagonists & inhibitors , HMGB1 Protein/genetics , Humans , Inflammation Mediators/metabolism , Lung/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , Pneumonia, Viral/genetics , Pneumonia, Viral/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism , Up-Regulation , Virus Replication
7.
Virology ; 510: 262-272, 2017 10.
Article in English | MEDLINE | ID: mdl-28772166

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of respiratory infection in infants. Unfortunately, no effective vaccine or treatment against RSV is currently available. Pulmonary C-fibers (PCFs) are critical for regulating pulmonary inflammation and airway hyperresponsiveness (AHR). We previously reported that IFN-γ partially mediated RSV-induced airway disorders. In this study, we found that PCF degeneration alleviated RSV-induced airway inflammation, especially AHR by downregulating IFN-γ receptor 1 (IFNGR1), but had no effect on IFN-γ induction. In contrast, PCF degeneration actually increased IFN-α/ß levels, as were the levels of STAT1 and phosphorylated STAT1 (pSTAT1). Exogenous IFN-α treatment induced STAT1 activation and downregulated IFNGR1 expression. These results suggest that PCFs affect IFNGR1 expression by inducing IFN-α to regulate IFN-γ-mediated airway inflammation and AHR. Thus, targeting PCFs activation may help control RSV-induced airway disorders, especially AHR, even with the presence of inflammation.


Subject(s)
Down-Regulation , Host-Pathogen Interactions , Interferon-alpha/metabolism , Nerve Fibers, Unmyelinated/metabolism , Receptors, Interferon/biosynthesis , Respiratory Hypersensitivity , Respiratory Syncytial Viruses/immunology , Animals , Disease Models, Animal , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Interferon gamma Receptor
8.
J Virol ; 90(5): 2536-43, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676790

ABSTRACT

UNLABELLED: Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE: The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection through mediating MMP-12 production via PAR2, indicating that the inhibition of PCF activity can be targeted therapeutically for virus infection-induced long-term airway disorders.


Subject(s)
Inflammation/pathology , Lung/pathology , Matrix Metalloproteinase 12/metabolism , Nerve Fibers, Unmyelinated/pathology , Respiratory Syncytial Virus Infections/pathology , Animals , Disease Models, Animal , Female , Mice, Inbred BALB C , Receptor, PAR-2/metabolism
9.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 41(1): 69-74, 2012 Jan.
Article in Chinese | MEDLINE | ID: mdl-22419467

ABSTRACT

OBJECTIVE: To investigate the expression pattern of hoxd3 gene during early embryogenesis and angiogenesis of wild-type zebrafish. METHODS: Total RNA was extracted from embryos of zebrafish in different development stages by trizol. The cDNA of hoxd3 gene was amplified by RT-PCR. The RT-PCR product was ligated to pCS(2+) vector by T4 DNA ligatase polymerase and sequenced. T3 RNA polymerase in vitro transcription system was used to obtain the probe of digoxin-labeled anti-sense mRNA of hoxd3 gene. The expression pattern of hoxd3 was detected by whole embryo in situ hybridization (WISH) with anti-sense mRNA probe. RESULTS: pCS(2+)-hoxd3 plasmid was successfully constructed, which was used to prepare anti-sense mRNA probe of hoxd3 in vitro. Expression pattern of hoxd3 gene was detected by WISH during zebrafish early embryogenesis and angiogenesis. It was observed that hoxd3 mRNA was expressed at the junction region of midbrain and hindbrain in wild-type zebrafish in embryos at 24 ≊72h postfertilization(hpf). CONCLUSION: hoxd3 gene is mainly expressed in nervous system of wide-type zebrafish embryos.


Subject(s)
Homeodomain Proteins/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Cloning, Molecular , Gene Expression Regulation, Developmental , Genetic Vectors , Homeodomain Proteins/metabolism , In Situ Hybridization , Plasmids/genetics , RNA, Messenger/genetics , Transfection , Zebrafish/embryology , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...