Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clean Prod ; 291: 125246, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33250588

ABSTRACT

Medical waste is a special class of hazardous pollutants. Improper treatment would cause secondary environmental pollution, especially when responding to public health emergencies. However, there are relatively few researches on the generation of medical waste, and there is a lack of basic understanding of its spatial-temporal heterogeneity. The outbreak of SARS in 2002 is a turning point in China's medical system reform. We estimated the production of medical waste and pollutants on a provincial scale in China from 2002 to 2018, using the data of medical statistics. Moreover, we forecasted the trend of medical waste in China until 2030, using a combination of environmental pressure model (STIRPAT) and time series model (ARIMA). We found that with the development of China's medical system and economy (such as the increase in personal income and popularization of universal health care), the number of seeking medical treatment rapidly increase led to explosive growth in medical waste (∼240%) and pollutants (∼260%), and large hospitals are the major sources. By 2030, the production of medical waste would still increase by more than 50% compared with 2018 even there is no the pandemic due to the huge population. The production of medical waste in the eastern region was higher than that in the west under the influence of higher population and GDP, while the per capita medical waste was only affected by household consumption level which had no regional characteristic. Additionally, Hg loads from medical waste are more than twice as high as that from discharged wastewater in some regions, which are facing great control pressures. In the future, when planning for medical waste disposal, policymakers shall increase the disposal facilities based on population and promote mobile treatment equipment to improve efficiency, increase the number of beds in medical institutions rather than building more hospitals, and strengthen basic research on the environmental impact.

2.
J Public Health (Oxf) ; 43(1): 76-81, 2021 04 12.
Article in English | MEDLINE | ID: mdl-32978620

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has spread worldwide and caused negative economic and health effects. China is one of the most seriously affected countries, and it has adopted grid governance measures at the basic level of society, which include city lockdown, household survey and resident quarantine. By the end of April, China had basically brought the pandemic under control within its own borders, and residents' lives and factory production gradually began to return to normal. In referring to the specific cases of different communities, schools, and enterprises in the four cities of Anhui, Beijing, Shenzhen and Zibo, we analyze grid-based governance measures and we summarize the effectiveness and shortcomings of these measures and discuss foundations and future challenges of grid governance. We do so in the expectation (and hope) that the world will gain a comprehensive understanding of China's situation and introduce effective measures that enable the prevention and control of COVID-19.


Subject(s)
COVID-19/prevention & control , Communicable Disease Control/organization & administration , China , Humans , Quarantine/organization & administration , Schools/organization & administration , Universities/organization & administration
3.
RSC Adv ; 9(12): 6881-6889, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-35518466

ABSTRACT

A novel host material featuring the characteristics of bipolarity and thermally activated delayed fluorescence, 10-(4-(5,5-dimethylbenzofuro[3,2-c]acridin-13(5H)-yl)phenyl)-10-phenylanthracen-9(10H)-one (DphAn-5BzAc), has been designed and synthesized. By employing this material as the host of green emitter Ir(ppy)2acac, we have fabricated phosphorescent organic light-emitting diodes (PhOLEDs) with two hosting schemes, which are the single host system consisting of DhAn-5BzAc and the co-host system with 1,3-bis(carbazolyl)benzene (mCP). We found that the co-host based PhOLED achieved very low energy consumption values at high brightnesses, which were only 0.5, 5.9 and 94.0 mW m-2 at 100, 1000 and 10 000 cd m-2, respectively. The extremely low energy consumption for DhAn-based PhOLEDs were attributed to the excellent bipolar transport properties and thermally activated delayed fluorescence characteristics.

4.
iScience ; 9: 532-541, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497025

ABSTRACT

The design of blue fluorescent materials combining both deep-blue emission (CIEy<0.06) and high-efficiency climbing over the typically limited exciton production efficiency of 25% is a challenge for organic light-emitting diodes (OLEDs). In this work, we have synthesized two blue luminogens, trans-9,10-bis(2-butoxyphenyl)anthracene (BBPA) and trans-9,10-bis (2,4-dimethoxyphenyl)anthracene with high photoluminescence quantum yields (PLQYs) of 89.5% and 87.0%, respectively. Intriguingly, we have proposed a strategy to avoid aggregation-caused quenching, which can effectively reduce the undesirable excimeric emission by introducing two host matrices with twisted molecular structure, 9,10-di(naphth-2-yl) anthracene and 10,10'-bis-(4-fluorophenyl)-3,3'-dimethyl-9,9'-bianthracene (MBAn-(4)-F), in the BBPA emission layer. The device containing the EML of BBPA-doped MBAn-(4)-F exhibited a high external quantum efficiency of 10.27% for deep-blue emission with the Commission International de L'Eclairage CIE coordinates of (0.15, 0.05) via the steric effect. Importantly, this represents an advance in deep-blue-emitting fluorescent OLED architectures and materials that meet the requirements of high-definition display.

5.
Exp Ther Med ; 12(4): 2439-2446, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27703505

ABSTRACT

An avian-origin influenza H7N9 virus epidemic occurred in China in 2013-2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37-52, 131-142, 215-234, 465-484 and 487-505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine235-to-leucine235) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...