Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 37(7): 1187-1198, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38837948

ABSTRACT

Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.


Subject(s)
Apoptosis , Cell Survival , DNA Damage , Hydroquinones , NF-kappa B , Poly (ADP-Ribose) Polymerase-1 , Apoptosis/drug effects , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Hydroquinones/pharmacology , Humans , NF-kappa B/metabolism , DNA Damage/drug effects , Cell Survival/drug effects , Cell Line , Signal Transduction/drug effects , Dose-Response Relationship, Drug
2.
Ecology ; 105(5): e4284, 2024 May.
Article in English | MEDLINE | ID: mdl-38494344

ABSTRACT

Resource partitioning is considered a key factor in alleviating competitive interactions, enabling coexistence among consumer species. However, most studies have focused on resource partitioning between species, ignoring the potentially critical role of intraspecific variation in resource use. We investigated floral resource partitioning across species, colonies, and individuals in a species-rich bumblebee community in the diversification center of bumblebees. We used a total of 10,598 bumblebees belonging to 13 species across 5 years in the Hengduan Mountains of southwest China. First, we evaluated the influence of a comprehensive set of floral traits, including both those related to attractiveness (flower color and shape) and rewards (pollen, sugar ratio, nectar volume, sugar concentration, and amino acid content) on resource partitioning at the species level in bumblebee-plant networks. Then, we explored intraspecific resource partitioning on the colony and individual levels. Our results suggest that bumblebee species differ substantially in their use of the available floral resources, and that this mainly depends on flower attractiveness (floral color and shape). Interestingly, we also detected floral resource partitioning at the colony level within all commonest bumblebee species evaluated. In general, floral resource partitioning between bumblebee individuals decreased with species- and individual-level variation in body size (intertegular span). These results suggest that bumblebee species may coexist via the flexibility in their preferences for specific floral traits, which filters up to support the co-occurrence of high numbers of species and individuals in this global hotspot of species richness.


Subject(s)
Flowers , Species Specificity , Animals , Bees/physiology , Flowers/physiology , China , Ecosystem
3.
Chem Biol Interact ; 392: 110923, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382706

ABSTRACT

Aflatoxin B1 (AFB1) is the most toxic mycotoxin and a proven human carcinogen that requires metabolic activation, known by cytochrome P450 (CYP) 1A2 and 3A4. Previous evidence showed that AFB1 is activated by human recombinant CYP1A1 expressed in budding yeast. Yet, the toxicity, in particular the genotoxicity of the reactive metabolites formed from AFB1 remains unclear. Humans could be exposed to both AFB1 and benzo(a)pyrene (BaP) simultaneously, thus we were interested in their combined genotoxic effects subsequent to metabolic activation by CYP1A1. In this study, molecular docking of AFB1 to human CYP1A1 indicated that AFB1 is valid as a substrate. In the incubations with AFB1 in human CYP1A1-expressed microsomes, AFM1 as a marking metabolite of AFB1 was detected. Moreover, AFB1 induced micronucleus formation in a Chinese hamster V79-derived cell line and in a human lung epithelial BEAS-2B cell line, both expressing recombinant human CYP1A1, V79-hCYP1A1 and 2B-hCYP1A1 cells, respectively. Immunofluorescence of centromere protein B stained micronuclei was dominant in AFB1-treated BEAS-2B cells exposed to AFB1, suggesting an aneugenic effect. Moreover, AFB1 elevated the levels of ROS, 8-OHdG, AFB1-DNA adduct, and DNA breaks in 2B-hCYP1A1 cells, compared with those in the parental BEAS-2B cells. Meanwhile, AFB1 increased CYP1A1, RAD51, and γ-H2AX protein levels in 2B-hCYP1A1 cells, which were attenuated by the CYP1A1 inhibitor bergamottin. Co-exposure of AFB1 with BaP increased 8-OHdG, RAD51, and γ-H2AX levels (indicating DNA damage). In conclusion, AFB1 could be activated by human CYP1A1 for potent aneugenicity, which may be further enhanced by co-exposure to BaP.


Subject(s)
Cytochrome P-450 CYP1A1 , Cytochrome P-450 Enzyme System , Animals , Humans , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 Enzyme System/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Benzo(a)pyrene/toxicity , Aneugens , Molecular Docking Simulation , Mammals/metabolism
4.
Org Lett ; 26(1): 304-309, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38165162

ABSTRACT

Reported herein is direct C(sp3)-H arylation of unprotected benzyl anilines and alkylarenes via consecutive photoinduced electron transfer by visible light irradiation. Reductive quenching cycles and radical-radical cross-coupling were involved, and electron paramagnetic resonance experiments provide evidence for the formation of radical intermediates formed in situ. The protocol highlights transition metal free, external oxidant free, broad substrate scope, and high efficiency (>60 examples, up to 96%).

5.
Chem Biol Interact ; 387: 110809, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38006958

ABSTRACT

BACKGROUND: Hydroquinone (HQ), a major metabolite of benzene and known hematotoxic carcinogen. MicroRNA 1246 (miR-1246), an oncogene, regulates target genes in carcinogenesis including leukemia. This study investigates the impact of exosomal derived miR-1246 from HQ-transformed (HQ19) cells on cell-to-cell communication in recipient TK6 cells. METHODS: RNA sequencing was used to identify differentially expressed exosomal miRNAs in HQ19 cells and its phosphate buffered solution control cells (PBS19), which were then confirmed using qRT-PCR. The impact of exosomal miR-1246 derived from HQ-transformed cells on cell cycle distribution was investigated in recipient TK6 cells. RESULTS: RNA sequencing analysis revealed that 34 exosomal miRNAs were upregulated and 158 miRNAs were downregulated in HQ19 cells compared with PBS19 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses predicted that their targets are enriched in cancer development-related pathways, such as MAPK signaling, microRNAs in cancer, apoptosis, PI3K-Akt signaling, cell cycle, Ras signaling, and Chronic myeloid leukemia. Eleven miRNAs were confirmed to have differential expression through qRT-PCR, with 6 upregulated (miR-140-3p, miR-551b-3p, miR-7-5p, miR-1290, miR-92a-3p, and miR-1246) and 5 downregulated (miR-183-5p, miR-26a-5p, miR-30c-5p, miR-205-5p, and miR-99b-3p). Among these, miR-1246 exhibited the highest expression level. HQ exposure resulted in a concentration-dependent increase in miR-1246 levels and decrease Cyclin G2 (CCNG2) levels in TK6 cells. Similarly, exosomes from HQ19 exhibited similar effects as HQ exposure. Dual luciferase reporter gene assays indicated that miR-1246 could band to CCNG2. After HQ exposure, exosomal miR-1246 induced cell cycle arrest at the S phase, elevating the expression of genes like pRb, E2F1, and Cyclin D1 associated with S phase checkpoint. However, silencing miR-1246 caused G2/M-phase arrest. CONCLUSION: HQ-transformed cells' exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.


Subject(s)
Cyclin G2 , MicroRNAs , Humans , Cyclin G2/genetics , Cyclin G2/metabolism , S Phase , Hydroquinones/toxicity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Transformation, Neoplastic
6.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2854-2860, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37897294

ABSTRACT

Insect pollinators play a vital role in global crop pollination. Due to climate change, agricultural intensification, and urbanization in recent decades, insect pollinator abundance and species richness have declined rapidly at global and regional scales. Insufficient pollination on croplands is becoming a significant challenge worldwide. In recent years, planting of field-side companion plants that flower concurrently in the vacant space on croplands has been proposed as an effective measure in developed countries to improve pollinator abundance and diversity. These companion plants can provide stable food sources (such as nectar and pollen) and nesting sites for pollinators. Related studies in China are still limited. We reviewed the global research status on the effects of field-side companion plants on crop pollination services, focused on the factors influencing the impacts of co-flowering plants on crop pollination, optimal selection principles for companion plants, and put forward perspectives for application in Chinese agriculture.


Subject(s)
Ecosystem , Pollination , Animals , Bees , Insecta , Urbanization , Crops, Agricultural , Flowers
7.
Oecologia ; 203(1-2): 193-204, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823959

ABSTRACT

Pollinators mediate interspecific and intraspecific plant-plant indirect interactions (competition vs. facilitation) via density-dependent processes, potentially shaping the dynamics of plant communities. However, it is still unclear which ecological drivers regulate density-dependent patterns, including scale, pollination niches (i.e., the main pollinator functional group) and floral attractiveness to pollinators. In this study, we conducted three-year field observations in Hengduan Mountains of southwest China. By gathering data for more than 100 animal-pollinated plant species, we quantified the effect (positive vs. negative) of conspecific and heterospecific flower density on pollination at two scales: plot-level (4 m2) and site-level (100-5000 m2). Then, we investigated how pollination niches and floral attractiveness to pollinators (estimated here as average per-flower visitation rates) modulated density-dependent pollination interactions. Pollinator visitation depended on conspecific and heterospecific flower density, with rare plants subjected to interspecific competition at the plot-level and interspecific facilitation at the site-level. Such interspecific competition at the plot-level was stronger for plants pollinated by diverse insects, while interspecific facilitation at the site-level was stronger for bee-pollinated plants. Moreover, we also found stronger positive conspecific density-dependence for plants with lower floral attractiveness at the site-level, meaning that they become more frequently visited when abundant. Our study indicates that the role of pollination in maintaining rare plants and plant diversity depends on the balance of density-dependent processes in species-rich communities. We show here that such balance is modulated by scale, pollination niches and floral attractiveness to pollinators, indicating the context-dependency of diversity maintenance mechanisms.


Subject(s)
Plants , Pollination , Bees , Animals , Pollination/physiology , Flowers/physiology , Insecta , China
8.
Environ Toxicol ; 38(8): 1874-1890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148176

ABSTRACT

Hydroquinone (HQ), one of the main active metabolites of benzene in vivo, 7is commonly used as a surrogate for benzene in in vitro studies and has been shown to be cytotoxic. The aim of this study was to investigate the role of endoplasmic reticulum stress (ERS) in HQ-induced autophagy and apoptosis in human lymphoblastoid cells (TK6) and how activating transcription factor 6 (ATF-6) is involved. We treated TK6 cells with HQ to establish a cytotoxicity model and found that HQ induced cellular ERS, autophagy and apoptosis by Western blot, flow cytometry and transmission electron microscopy. In addition, inhibition of both reactive oxygen species (ROS) and ERS inhibited cellular autophagy and apoptosis, suggesting that ERS may be induced by ROS, which in turn affects autophagy and apoptosis. Our study also found that HQ could inhibit ATF6 expression and mTOR activation. Knockdown of ATF6 enhanced autophagy and apoptosis levels and further inhibited mTOR activation; activation of ATF6 by AA147 enhanced cellular activity, suggesting that ATF6 may affect cellular autophagy and apoptosis through mTOR. In conclusion, our data suggest that ROS mediated ERS may promote autophagy and apoptosis by inhibiting ATF6-mTOR pathway after HQ treatment of TK6 cells.


Subject(s)
Activating Transcription Factor 6 , Hydroquinones , Humans , Hydroquinones/toxicity , Activating Transcription Factor 6/metabolism , Reactive Oxygen Species/metabolism , Benzene , TOR Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress , Apoptosis/physiology , Autophagy
9.
Environ Toxicol ; 38(6): 1420-1430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36988267

ABSTRACT

Hydroquinone (HQ), one of the metabolites of benzene in humans, has significant hepatotoxic properties. Chronic exposure to HQ can lead to leukemia. In a previous study by this group, we constructed a model of malignant transformation of human lymphoblastoid cells (TK6) induced by chronic exposure to HQ with significant subcutaneous tumorigenic capacity in nude mice. miR-92a-3p is a tumor factor whose role in HQ-induced malignant transformation is not yet clear. In the present study, raw signal analysis and dual-luciferase reporter gene results suggested that miR-92a-3p could target and regulate TOB1, and the expression level of miR-92a-3p was significantly upregulated in the long-term HQ-induced TK6 malignant transformation model, while the anti-proliferative factor TOB1 was significantly downregulated. To investigate the mechanism behind this, we inhibited miR-92a-3p in a malignant transformation model and found a decrease in cell viability, a decrease in MMP-9 protein levels, a G2/M phase block in the cell cycle, and an upregulation of the expression of G2/M phase-related proteins cyclinB1 and CDK1. Inhibition of miR-92a-3p in combination with si-TOB1 restored cell viability, inhibited cyclin B1 and CDK1 protein levels, and attenuated the G2/M phase block. Taken together, miR-92a-3p reduced the cell proliferation rate of HQ19 and caused cell cycle arrest by targeting TOB1, which in turn contributed to the altered malignant phenotype of the cells. This study suggests that miR-92a-3p is likely to be a biomarker for long-term HQ-induced malignant transformation of TK6 and could be a potential therapeutic target for leukemia caused by long-term exposure to HQ.


Subject(s)
Leukemia , MicroRNAs , Animals , Mice , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Hydroquinones/toxicity , Mice, Nude , Cell Division , Apoptosis/genetics
10.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(1): 81-83, 2022 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-35150113

ABSTRACT

This article introduces the basic situation of the pilot medical devices registrant of Guangdong province, by analyzing the approval pilot enterprise and product information, results and characteristics of inductive work, points out many problems such as Shenzhen enterprises account for a large proportion, lack of benefits, response inactive, etc. analyzes the related reasons, including the existence of the alternative policies, the protection of intellectual property rights, cost factors, tend to increasee industry development foundation, etc., and puts forward suggestions for the perfect job, including speeding up legislation, building a demonstration project, improving regulation ability, etc.


Subject(s)
Equipment and Supplies , China
11.
AoB Plants ; 11(5): plz052, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31579102

ABSTRACT

Herkogamy is an effective way to reduce sexual interference. However, the separation of stigma and anther potentially leads to a conflict because the pollen may be placed in a location on the pollinator different from the point of stigma contact, which can reduce pollination accuracy. Floral mechanisms aiming to resolve this conflict have seldom been explored. The floral biology of protandrous Ajuga decumbens was studied to uncover how the herkogamy dilemma can be resolved. Flower anthesis was divided into male, middle, female and wilting phases. The positions of stigma and stamen were dissimilar in different flower development stages. We measured the distance of the stamen and stigma to the lower corolla lip at different floral phases, which was the pollinators' approaching way. The pollen viability, stigma receptivity, pollen removal and pollen deposition on stigma were investigated at different phases. During the male phase, the dehisced anthers were lower than the stigma, located at the pollinators' approaching way, and dispersed most pollen with high viability. As the flower developed, the anthers moved upwards, making way for pollen deposition during the female phase. Meanwhile, the stigma becomes receptive by moving into the way and consequently was deposited with sufficient pollen. The position exchange of the stamen and stigma created a dynamic herkogamy at the floral phase with different sexual functions. This floral mechanism effectively avoided sexual interference and maintained pollination accuracy. In Ajuga, the movement herkogamy might be of adaptive significance in response to the changes in the pollination environment.

12.
Front Plant Sci ; 8: 783, 2017.
Article in English | MEDLINE | ID: mdl-28539934

ABSTRACT

A sensitive bilobed stigma is thought to assure reproduction, avoid selfing and promote outcrossing. In addition, it may also play a role in pollinator selection since only pollinators with the appropriate body size can trigger this mechanism. However, no experimental study has investigated how the sensitive stigma responds to different pollinators and its potential effects on pollination. Mazus miquelii (Phrymaceae), a plant with a bilobed stigma was studied to investigate the relationship between stigma behaviors and its multiple insect pollinators. The reaction time of stigma closure after touched, duration of temporary closure, and factors determining permanent closure of the stigma were studied when flowers were exposed to different visitors and conducted with hand pollination. Manual stimulation was also used to detect the potential differences in stigmas when touched with different degrees of external forces. Results indicated that, compared to pollinators with a small body size, larger pollinators transferred more pollen grains to the stigma, causing a rapid stigma response and resulting in a higher percentage of permanent closures. Duration of temporary closure was negatively correlated with the speed of stigma closure; a stigma that closed more rapidly reopened more slowly. Manual stimulation showed that reaction time of stigma closure was likely a response to external mechanical forces. Hand pollination treatments revealed that the permanent closure of a stigma was determined by the size of stigmatic pollen load. For large pollinators, the speedy reaction of the stigma might help to reduce pollen loss, enhance pollen germination and avoid obstructing pollen export. Stigmas showed low sensitivity when touched by inferior pollinators, which may have increased the possibility of pollen deposition by subsequent visits. Therefore, the stigma behavior in M. miquelii is likely a mechanism of pollinator selection to maximize pollination success.

13.
Ann Bot ; 119(6): 1053-1059, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28158409

ABSTRACT

Background and Aims: It has been suggested that the dynamics of nectar replenishment could differ for flowers after being nectar robbed or visited legitimately, but further experimental work is needed to investigate this hypothesis. This study aimed to assess the role of nectar replenishment in mediating the effects of nectar robbing on pollinator behaviour and plant reproduction. Methods: Plant-robber-pollinator interactions in an alpine plant, Salvia przewalskii , were studied. It is pollinated by long-tongued Bombus religiosus and short-tongued B. friseanus , but robbed by B. friseanus . Nectar production rates for flowers after they were either robbed or legitimately visited were compared, and three levels of nectar robbing were created to detect the effects of nectar robbing on pollinator behaviour and plant reproduction. Key Results: Nectar replenishment did not differ between flowers that had been robbed or legitimately visited. Neither fruit set nor seed set was significantly affected by nectar robbing. In addition, nectar robbing did not significantly affect visitation rate, flowers visited within a plant per foraging bout, or flower handling time of the legitimate pollinators. However, a tendency for a decrease in relative abundance of the pollinator B. religiosus with an increase of nectar robbing was found. Conclusions: Nectar robbing did not affect female reproductive success because nectar replenishment ensures that pollinators maintain their visiting activity to nectar-robbed flowers. Nectar replenishment might be a defence mechanism against nectar robbing to enhance reproductive fitness by maintaining attractiveness to pollinators. Further studies are needed to reveal the potential for interference competition among bumble bees foraging as robbers and legitimate visitors, and to investigate variation of nectar robbing in communities with different bumble bee species composition.


Subject(s)
Bees/physiology , Feeding Behavior , Plant Nectar/metabolism , Pollination , Salvia/physiology , Animals , China , Food Chain , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...