Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
J Am Chem Soc ; 146(22): 15538-15548, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38769050

ABSTRACT

The integration of oxidation and reduction half-reactions to amplify their synergy presents a considerable challenge in CO2 photoconversion. Addressing this challenge requires the construction of spatially adjacent redox sites while suppressing charge recombination at these sites. This study introduces an innovative approach that utilizes spatial synergy to enable synergistic redox reactions within atomic proximity and employs spin polarization to inhibit charge recombination. We incorporate Mn into Co3O4 as a catalyst, in which Mn sites tend to enrich holes as water activation sites, while adjacent Co sites preferentially capture electrons to activate CO2, forming a spatial synergy. The direct H transfer from H2O at Mn sites facilitates the formation of *COOH on adjacent Co sites with remarkably favorable thermodynamic energy. Notably, the incorporation of Mn induces spin polarization in the system, significantly suppressing the recombination of photogenerated charges at redox sites. This effect is further enhanced by applying an external magnetic field. By synergizing spatial synergy and spin polarization, Mn/Co3O4 exhibits a CH4 production rate of 23.4 µmol g-1 h-1 from CO2 photoreduction, showcasing a 28.8 times enhancement over Co3O4. This study first introduces spin polarization to address charge recombination issues at spatially adjacent redox sites, offering novel insights for synergistic redox photocatalytic systems.

2.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459021

ABSTRACT

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Subject(s)
Mannose-6-Phosphate Isomerase , Mannose , Animals , Mice , Mannose-6-Phosphate Isomerase/metabolism , Glycosylation , Mannose/metabolism , Glucose/metabolism , Antiviral Agents/pharmacology
3.
mBio ; 15(4): e0039224, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38411085

ABSTRACT

SARS-CoV-2, the causative agent of COVID-19, has been intensely studied in search of effective antiviral treatments. The immunosuppressant cyclosporine A (CsA) has been suggested to be a pan-coronavirus inhibitor, yet its underlying mechanism remained largely unknown. Here, we found that non-structural protein 1 (Nsp1) of SARS-CoV-2 usurped CsA-suppressed nuclear factor of activated T cells (NFAT) signaling to drive the expression of cellular DEAD-box helicase 5 (DDX5), which facilitates viral replication. Nsp1 interacted with calcineurin A (CnA) to displace the regulatory protein regulator of calcineurin 3 (RCAN3) of CnA for NFAT activation. The influence of NFAT activation on SARS-CoV-2 replication was also validated by using the Nsp1-deficient mutant virus. Calcineurin inhibitors, such as CsA and VIVIT, inhibited SARS-CoV-2 replication and exhibited synergistic antiviral effects when used in combination with nirmatrelvir. Our study delineated the molecular mechanism of CsA-mediated inhibition of SARS-CoV-2 replication and the anti-SARS-CoV-2 action of calcineurin inhibitors. IMPORTANCE: Cyclosporine A (CsA), commonly used to inhibit immune responses, is also known to have anti-SARS-CoV-2 activity, but its mode of action remains elusive. Here, we provide a model to explain how CsA antagonizes SARS-CoV-2 through three critical proteins: DDX5, NFAT1, and Nsp1. DDX5 is a cellular facilitator of SARS-CoV-2 replication, and NFAT1 controls the production of DDX5. Nsp1 is a viral protein absent from the mature viral particle and capable of activating the function of NFAT1 and DDX5. CsA and similar agents suppress Nsp1, NFAT1, and DDX5 to exert their anti-SARS-CoV-2 activity either alone or in combination with Paxlovid.


Subject(s)
COVID-19 , SARS-CoV-2 , Signal Transduction , Viral Nonstructural Proteins , Humans , Antiviral Agents , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , COVID-19/virology , Cyclosporine/pharmacology , NFATC Transcription Factors/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/metabolism
4.
5.
Chem Soc Rev ; 53(2): 656-683, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38165865

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.

6.
ACS Infect Dis ; 10(3): 858-869, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-37897418

ABSTRACT

SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an S-adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures. The in vitro activities of the compounds were also validated in SARS-CoV-2-infected mammalian cells. Importantly, we showed that nsp14 serves as an authentic target of Bi(III)-based antivirals in SARS-CoV-2-infected mammalian cells by quantification of both the protein and inhibitor. This study highlights the importance of nsp14/nsp10 as a potential target for the development of pan-antivirals against SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Methyltransferases/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Antiviral Agents/pharmacology , Mammals/metabolism
7.
J Colloid Interface Sci ; 657: 133-141, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38035416

ABSTRACT

As one of the most promising photocatalysts for H2 evolution, graphitic carbon nitride (CN) has many appealing attributes. However, the activity of pristine CN remains unsatisfactory due to severe charge carrier recombination and lack of active sites. In this study, we report a two-step approach for the synthesis of CN nanotubes (TCN) loaded with NiS nanoparticles. The resulting composite photocatalysts gave a H2 evolution rate of 752.9 µmol g-1 h-1, which is 42.3 times higher compared to the pristine CN photocatalyst. Experimental and simulation results showed that the Schottky junction which was formed between TCN and NiS was key to achieving high activity. This is because the formation of Schottky junction prevented the backflow of electrons from NiS to TCN, which improved charge separation efficiency. More importantly, it also led to the accumulation of electrons on NiS, which significantly weakened the SH bond, such that the intermediate hydrogen species desorbed more easily from NiS surface to promote H2 evolution activity.

8.
Biol Res Nurs ; 26(1): 150-159, 2024 01.
Article in English | MEDLINE | ID: mdl-37616306

ABSTRACT

Introduction: To explore the relationship between the composite dietary antioxidant index (CDAI) and gout to provide support for preventing gout through dietary intervention. Methods: Eligible participants from the 2007 to 2018 National Health and Nutrition Examination Survey aged 20 years and older were included in this cross-sectional study. The weighted chi-square test was used to compare the categorical variables difference between CDAI quartiles groups. The weighted univariate and binary logistic regression analysis were used to test the association between variables and gout. The weighted multivariable logistic regression was used to test the association of CDAI and gout in 4 different models. Subgroup analysis on the associations of CDAI with gout was conducted with stratified factors. Results: The final participants were 26,117, 13,103 (50.17%) were female, 8718 (33.38%) were 40-59 years, 11,200 (42.88%) were white and 1232 (4.72%) had gout. After adjusting for all covariates, the CDAI was associated with gout (odds ratio (OR), .97; 95% CI: .95-1.00). Participants in the highest CDAI quantile group were at low risk of gout (odds ratio (OR), .65; 95% CI: .50-.84) versus those in the lowest quantile group. Subgroup analysis and interaction test showed no significant dependence on diabetes mellitus (DM), marital status, alcohol status, hypertension, poverty income ratio (PIR), education level, body mass index (BMI), smoke status, age, sex, race, and chronic kidney disease (CKD) on this association (all p for interaction >.05). Conclusions: Composite dietary antioxidant index was inversely associated with gout in US adults, and dietary antioxidant intervention might be a promising method in the therapy of gout and greater emphasis should be placed on zinc, selenium, carotenoids, vitamins A, C, and E.


Subject(s)
Antioxidants , Gout , Adult , Humans , Female , Male , Nutrition Surveys , Cross-Sectional Studies , Diet
9.
NPJ Vaccines ; 8(1): 177, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985668

ABSTRACT

We compared the protective effects of inactivated SARS-CoV-2 vaccines derived from the ancestral and the currently circulating BA.5.2 strains against infection with multiple variants in Syrian golden hamsters. Vaccination with BA.5.2 effectively protected against infection with the Omicron subvariants including XBB.1, but not the Alpha or Delta variant. In contrast, hamsters vaccinated with the ancestral strain demonstrated decent neutralization activity against both the Omicron and non-Omicron variants. Our findings might instruct future design and formulation of SARS-CoV-2 vaccines.

10.
Opt Express ; 31(21): 34748-34763, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859224

ABSTRACT

In the current visible light communication (VLC) system, a condenser lens is generally used in the front of receiver to achieve a higher data rate, making an extremely narrow field-of-view for the receiver. With the spread of Industrial Internet of Things (IIoT), the communication between mobile terminals is urgently required. A wide-range detecting method for VLC system in IIoT scenario is asked. In this paper, a novel self-adaptive wide-FoV receiver involving reconfigurable intelligent surfaces (RIS) is proposed. The effective detecting range of the receiver can be expanded by dynamically adjusting the incident light directions with the assistance of RIS. Based on the maximum arrived flux criterion, the mathematical model is established and the optimized RIS parameter tuning algorithm is presented. The feasibility and validity of the method are verified by simulation. The results show that the tolerable transceiver offset can be increased to 2∼4 times as the conventional receiver.

11.
Chem Sci ; 14(38): 10570-10579, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799995

ABSTRACT

Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.

12.
Acc Chem Res ; 56(15): 2072-2083, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37436068

ABSTRACT

ConspectusWhen the size of materials is reduced, their volume decreases much faster than their surface area, which in the most extreme case leads to 2D nanomaterials which are "all surface". Since atoms at the surface have free energies, electronic states, and mobility which are very different from bulk atoms, nanomaterials that have large surface-to-volume ratios can display remarkable new properties compared to their bulk counterparts. More generally, the surface is where nanomaterials interact with their environment, which in turn places surface chemistry at the heart of catalysis, nanotechnology, and sensing applications. Understanding and utilizing nanosurfaces are not possible without appropriate spectroscopic and microscopic characterization techniques. An emerging technique in this area is surface-enhanced Raman spectroscopy (SERS), which utilizes the interaction between plasmonic nanoparticles and light to enhance the Raman signals of molecules near the nanoparticles' surfaces. SERS has the great advantage that it can provide detailed in situ information on surface orientation and binding between molecules and the nanosurface. A long-standing dilemma that has limited the applications of SERS in surface chemistry studies is the choice between surface-accessibility and plasmonic activity. More specifically, the synthesis of metal nanomaterials with strong plasmonic and SERS-enhancing properties typically involves the use of strongly adsorbing modifier molecules, but these modifiers also passivate the surface of the product material, which prevents the general application of SERS in the analysis of weaker molecule-metal interactions.In this Account, we discuss our efforts in the development of modifier-free synthetic approaches to synthesize surface-accessible, plasmonic nanomaterials for SERS. We start by discussing the definition of "modifiers" and "surface-accessibility", especially in the context of surface chemistry studies in SERS. As a general rule of thumb, the chemical ligands on surface-accessible nanomaterials should be easily displaceable by a wide range of target molecules relevant to potential applications. We then introduce modifier-free approaches for the bottom-up synthesis of colloidal nanoparticles, which are the basic building blocks for nanotechnology. Following this, we introduce modifier-free interfacial self-assembly approaches developed by our group that allow the creation of multidimensional plasmonic nanoparticle arrays from different types of nanoparticle-building blocks. These multidimensional arrays can be further combined with different types of functional materials to form surface-accessible multifunctional hybrid plasmonic materials. Finally, we demonstrate applications for surface-accessible nanomaterials as plasmonic substrates for SERS studies of surface chemistry. Importantly, our studies revealed that the removal of modifiers led to not only significantly enhanced properties but also the observation of new surface chemistry phenomena that had been previously overlooked or misunderstood in the literature. Realizing the current limitations of modifier-based approaches provides new perspectives in manipulating molecule-metal interactions in nanotechnology and can have significant implications in the design and synthesis of the next generation of nanomaterials.

13.
Nat Protoc ; 18(9): 2717-2744, 2023 09.
Article in English | MEDLINE | ID: mdl-37495750

ABSTRACT

The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Spectrum Analysis, Raman/methods , Colloids/chemistry , Nanotechnology , Metal Nanoparticles/chemistry
14.
ACS Nano ; 17(12): 11655-11664, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37272604

ABSTRACT

Incorporation of plasmonic metal nanomaterials can significantly enhance the visible light response of semiconductor photocatalysts via localized surface plasmon resonance (LSPR) mechanisms. However, the surfaces of plasmonic metal nanomaterials are often covered with surfactant molecules, which is undesired when the nanomaterials are used for photocatalytic hydrogen evolution, since surfactant molecules could significantly compromise the nanomaterials' cocatalyst functionalities by blocking the active sites and/or by inhibiting the surface charge transfer process. Herein, we demonstrate a method that assembles Au nanoparticles (NPs) into Au colloidosomes (AuCSs) without modifying their surfaces with surfactants. The resulting AuCSs were then coupled with CdS for the formation of Au-CdS composite photocatalysts through an in situ deposition method. The assembly of Au NPs induced a broader and stronger LSPR response for AuCSs, while the absence of surfactants allowed them to act efficiently as cocatalysts. This essentially enhanced the electron-hole pair generation rate and further their utilization efficiency, leading to an extremely high hydrogen evolution rate of 235.8 mmol·g-1·h-1 under simulated sunlight excitation.

15.
Opt Express ; 31(8): 12778-12788, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157431

ABSTRACT

In the industrial environment, the positioning of mobile terminals plays an important role in production scheduling. Visible light positioning (VLP) based on a CMOS image sensor has been widely considered as a promising indoor positioning technology. However, the existing VLP technology still faces many challenges, such as modulation and decoding schemes, and strict synchronization requirements. In this paper, a visible light area recognition framework based on convolutional neural network (CNN) is proposed, where the training data is the LED images acquired by the image sensor. The mobile terminal positioning can be realized from the perspective of recognition without modulating LED. The experimental results show that the mean accuracy of the optimal CNN model is as high as 100% for the two-class and the four-class area recognitions, and is more than 95% for the eight-class area recognition. These results are obviously superior to other traditional recognition algorithms. More importantly, the model has high robustness and universality, which can be applied to various types of LED lights.

16.
Cell Biosci ; 13(1): 74, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37072871

ABSTRACT

BACKGROUND: Cholesterol plays a vital role in multiple physiological processes. Cellular uptake of cholesterol is mediated primarily through endocytosis of low-density lipoprotein (LDL) receptor. New modifiers of this process remain to be characterized. Particularly, the role of fasting- and CREB-H-induced (FACI) protein in cholesterol homeostasis merits further investigation. METHODS: Interactome profiling by proximity labeling and affinity purification - mass spectrometry was performed. Total internal reflection fluorescence microscopy and confocal immunofluorescence microscopy were used to analyze protein co-localization and interaction. Mutational analysis was carried out to define the domain and residues required for FACI localization and function. Endocytosis was traced by fluorescent cargos. LDL uptake in cultured cells and diet-induced hypercholesterolemia in mice were assessed. RESULTS: FACI interacted with proteins critically involved in clathrin-mediated endocytosis, vesicle trafficking, and membrane cytoskeleton. FACI localized to clathrin-coated pits (CCP) on plasma membranes. FACI contains a conserved DxxxLI motif, which mediates its binding with the adaptor protein 2 (AP2) complex. Disruption of this motif of FACI abolished its CCP localization but didn't affect its association with plasma membrane. Cholesterol was found to facilitate FACI transport from plasma membrane to endocytic recycling compartment in a clathrin- and cytoskeleton-dependent manner. LDL endocytosis was enhanced in FACI-overexpressed AML12 cells but impaired in FACI-depleted HeLa cells. In vivo study indicated that hepatic FACI overexpression alleviated diet-induced hypercholesterolemia in mice. CONCLUSIONS: FACI facilitates LDL endocytosis through its interaction with the AP2 complex.

17.
BMC Cancer ; 23(1): 307, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016301

ABSTRACT

BACKGROUND: The kinesin-13 family member 2C (KIF2C) is a versatile protein participating in many biological processes. KIF2C is frequently up-regulated in multiple types of cancer and is associated with cancer development. However, the role of KIF2C in immune cell infiltration of tumor microenvironment and immunotherapy in breast cancer remains unclear. METHODS: The expression of KIF2C was analyzed using Tumor Immune Estimation Resource (TIMER) database and further verified by immunohistochemical staining in human breast cancer tissues. The correlation between KIF2C expression and clinical parameters, the impact of KIF2C on clinical prognosis and independent prognostic factors were analyzed by using TCGA database, the Kaplan-Meier plotter, and Univariate and multivariate Cox analyses, respectively. The nomograms were constructed according to independent prognostic factors and validated with C-index, calibration curves, ROC curves, and decision curve analysis. A gene set enrichment analysis (GSEA) was performed to explore the underlying molecular mechanisms of KIF2C. The degree of immune infiltration was assessed by the Estimation of Stromal and Immune cells in Malignant Tumor tissues using the Expression (ESTIMATE) algorithm and the single sample GSEA (ssGSEA). The Tumor mutational burden and Tumor Immune Dysfunction and Rejection (TIDE) were used to analyze immunotherapeutic efficiency. Finally, the KIF2C-related competing endogenous RNA (ceRNA) network was constructed to predict the putative regulatory mechanisms of KIF2C. RESULTS: KIF2C was remarkably up-regulated in 18 different types of cancers, including breast cancer. Kaplan-Meier survival analysis showed that high KIF2C expression was associated with poor overall survival (OS). KIF2C expression was associated with clinical parameters such as age, TMN stage, T status, and molecular subtypes. We identified age, stage, estrogen receptor (ER) and KIF2C expression as OS-related independent prognosis factors for breast cancer. An OS-related nomogram was developed based on these independent prognosis factors and displayed good predicting ability for OS of breast cancer patients. Finally, our results revealed that KIF2C was significantly related to immune cell infiltration, tumor mutational burden, and immunotherapy in patients with breast cancer. CONCLUSION: KIF2C was overexpressed in breast cancer and was positively correlated with immune cell infiltration and immunotherapy response. Therefore, KIF2C can serve as a potential biomarker for prognosis and immunotherapy in breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Prognosis , Receptors, Estrogen , Breast , Algorithms , Tumor Microenvironment , Kinesins/genetics
18.
Nat Commun ; 14(1): 1392, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36914627

ABSTRACT

Pickering emulsions represent an important class of functional materials with potential applications in sustainability and healthcare. Currently, the synthesis of Pickering emulsions relies heavily on the use of strongly adsorbing molecular modifiers to tune the surface chemistry of the nanoparticle constituents. This approach is inconvenient and potentially a dead-end for many applications since the adsorbed modifiers prevent interactions between the functional nanosurface and its surroundings. Here, we demonstrate a general modifier-free approach to construct Pickering emulsions by using a combination of stabilizer particles, which stabilize the emulsion droplet, and a second population of unmodified functional particles that sit alongside the stabilizers at the interface. Freeing Pickering emulsions from chemical modifiers unlocks their potential across a range of applications including plasmonic sensing and interfacial catalysis that have previously been challenging to achieve. More broadly, this strategy provides an approach to the development of surface-accessible nanomaterials with enhanced and/or additional properties from a wide range of nano-building blocks including organic nanocrystals, carbonaceous materials, metals and oxides.

19.
J Diabetes Res ; 2023: 1199885, 2023.
Article in English | MEDLINE | ID: mdl-36846514

ABSTRACT

Background: The current study analyzed the status and the factors of foot ulcers in diabetic patients and developed a nomogram and web calculator for the risk prediction model of diabetic foot ulcers. Methods: This was a prospective cohort study that used cluster sampling to enroll diabetic patients in the Department of Endocrinology and Metabolism in a tertiary hospital in Chengdu from July 2015 to February 2020. The risk factors for diabetic foot ulcers were obtained by logistic regression analysis. Nomogram and web calculator for the risk prediction model were constructed by R software. Results: The incidence of foot ulcers was 12.4% (302/2432). Logistic stepwise regression analysis showed that BMI (OR: 1.059; 95% CI 1.021-1.099), abnormal foot skin color (OR: 1.450; 95% CI 1.011-2.080), foot arterial pulse (OR: 1.488; 95% CI: 1.242-1.778), callus (OR: 2.924; 95%: CI 2.133-4.001), and history of ulcer (OR: 3.648; 95% CI: 2.133-5.191) were risk factors for foot ulcers. The nomogram and web calculator model were developed according to risk predictors. The performance of the model was tested, and the testing data were as follows: AUC (area under curve) of the primary cohort was 0.741 (95% CI: 0.7022-0.7799), and AUC of the validation cohort was 0.787 (95% CI: 0.7342-0.8407); the Brier score of the primary cohort was 0.098, and the Brier score of the validation cohort was 0.087. Conclusions: The incidence of diabetic foot ulcers was high, especially in diabetic patients with a history of foot ulcers. This study presented a nomogram and web calculator that incorporates BMI, abnormal foot skin color, foot arterial pulse, callus, and history of foot ulcers, which can be conveniently used to facilitate the individualized prediction of diabetic foot ulcers.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Diabetic Foot/diagnosis , Diabetic Foot/epidemiology , Prospective Studies , Risk Factors , Foot , Lower Extremity
20.
Phys Chem Chem Phys ; 25(4): 2706-2716, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36629741

ABSTRACT

Incorporation of plasmonic metals is one of the most widely adopted strategies for improving the photocatalytic hydrogen evolution reaction (HER) activity of semiconductor photocatalysts. This article summarizes recent advances in the development of plasmonic metal-semiconductor photocatalysts and four localized surface plasmon resonance (LSPR) driven mechanisms by which plasmonic metal nanoparticles can contribute to enhancement of HER activity. In addition, principles for maximizing the contribution of these LSPR driven mechanisms are highlighted to provide insights for future design of plasmonic metal-semiconductor photocatalysts with enhanced HER activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...