Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
J Affect Disord ; 361: 556-563, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38925314

ABSTRACT

OBJECTIVE: To investigate the effect of 20/4Hz transcutaneous auricular vagus nerve stimulation (taVNS) on anxiety symptoms in Parkinson's disease (PD) and the potential neural mechanism. METHODS: In the current randomized, double-blind, sham-controlled trial, 30 PD patients with anxiety (PD-A), 30 PD patients without anxiety (PD-nA), and 30 healthy controls (HCs) were enrolled. PD-A patients were randomly (1:1) allotted to real taVNS stimulation group (RS) or sham stimulation group (SS) to explore the efficacy of a two-week treatment of taVNS to promote anxiety recovery. Simultaneously, all participants were measured activation in the bilateral prefrontal cortex during verbal fluency task (VFT) using functional near-infrared spectroscopy. RESULTS: PD-A patients showed significantly decreased oxyhemoglobin in the left triangle part of the inferior frontal gyrus (IFG) during VFT, which was negatively related to the severity of anxiety symptoms. After two-week treatment of taVNS, the interaction of group and time had significant effect on HAMA scores (F = 18.476, p < 0.001, η2 = 0.398). In RS group, compared with baseline, HAMA scores decreased significantly in the post-treatment and follow-up condition (both p < 0.001). Meanwhile, in RS group, HAMA scores were lower than those in SS group in the post-treatment and follow-up condition (p = 0.006, <0.001, respectively). Furthermore, the 20/4Hz taVNS remarkably ameliorated anxiety symptoms in PD patients, directly correlated with the increased activation of the left triangle part of the IFG during VFT in RS group. CONCLUSION: Our results depicted that taVNS could ameliorate the anxiety symptoms of PD-A patients and regulated the function of the left triangle part of the IFG.


Subject(s)
Anxiety , Parkinson Disease , Prefrontal Cortex , Transcutaneous Electric Nerve Stimulation , Vagus Nerve Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/psychology , Parkinson Disease/complications , Male , Female , Vagus Nerve Stimulation/methods , Middle Aged , Double-Blind Method , Anxiety/therapy , Anxiety/physiopathology , Transcutaneous Electric Nerve Stimulation/methods , Prefrontal Cortex/physiopathology , Aged , Spectroscopy, Near-Infrared , Treatment Outcome
2.
Postgrad Med J ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767468

ABSTRACT

For metastatic prostate cancer, androgen deprivation therapy (ADT) is the key strategy to control the disease. However, after 18-24 months of treatment, most patients will progress from metastatic hormone-sensitive prostate cancer (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC) even with ADT. Once patients enter into mCRPC, they face with significant declines in quality of life and a dramatically reduced survival period. Thus, doublet therapy, which combines ADT with new hormone therapy (NHT) or ADT with docetaxel chemotherapy, substitutes ADT alone and has become the "gold standard" for the treatment of mHSPC. In recent years, triplet therapy, which combines ADT with NHT and docetaxel chemotherapy, has also achieved impressive effects in mHSPC. This article provides a comprehensive review of the recent applications of the triplet therapy in the field of mHSPC.

3.
ACS Appl Mater Interfaces ; 16(23): 30534-30544, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38818656

ABSTRACT

Organic-inorganic hybrid perovskite solar cells (PSCs) have recently been demonstrated to be promising renewable harvesters because of their prominent photovoltaic power conversion efficiency (PCE), although their stability and efficiency still have not reached commercial criteria. Trouble-oriented analyses showcase that defect reduction among the grain boundaries and interfaces in the prepared perovskite polycrystalline films is a practical strategy, which has prompted researchers to develop functional molecules for interface passivation. Herein, the pyridine-based bifunctional molecule dimethylpyridine-3,5-dicarboxylate (DPDC) was employed as the interface between the electron-transport layer and perovskite layer, which achieved a champion PCE of 21.37% for an inverted MAPbI3-based PSC, which was greater than 18.64% for the control device. The mechanistic studies indicated that the significantly improved performance was mainly attributed to the remarkably enhanced fill factor with a value greater than 83%, which was primarily due to the nonradiative recombination suppression offered by the passivation effect of DPDC. Moreover, the promoted carrier mobility together with the enlarged crystal size contributed to a higher short-circuit current density. In addition, an increase in the open-circuit voltage was also observed in the DPDC-treated PSC, which benefited from the improved work function for reducing the energy loss during carrier transport. Furthermore, the DPDC-treated PSC showed substantially enhanced stability, with an over 80% retention rate of its initial PCE value over 300 h even at a 60% relative humidity level, which was attributed to the hydrophobic nature of the DPDC molecule and effective defect passivation. This work is expected not only to serve as an effective strategy for using a pyridine-based bifunctional molecule to passivate perovskite interfaces to enhance photovoltaic performance but also to shed light on the interface passivation mechanism.

4.
Front Psychiatry ; 15: 1354999, 2024.
Article in English | MEDLINE | ID: mdl-38563028

ABSTRACT

Objective: Accumulating evidence has indicated that neurodevelopmental defects may underlie the pathophysiology of bipolar disorder (BD). Insulin-like growth factors (IGFs) are a family of neurotrophic factors that are essential for the survival and development of neurons. The present study aims to investigate whether IGF-2 signaling is implicated in the pathophysiological processes of BD. Method: 50 healthy controls and 78 patients with BD, including 23 patients who diagnosed acute depressive episode and 55 patients who diagnosed acute manic episode, were recruited in this study. The 17-item Hamilton Depression Rating Scale (HAMD-17) and the Young Mania Rating Scale (YMRS) were used to assess the severity of the depressive and manic symptoms, respectively. The serum IGF-2 level was determined by an enzyme-linked immunosorbent assay (ELISA). The Kolmogorov-Smirnov and Mann-Whitney U tests were used for between-group comparisons and spearman analysis was used to analyze correlations. Results: Patients with BD had lower serum IGF-2 levels (66.08 ± 21.22 ng/ml) when compared to healthy controls (88.72 ± 31.55 ng/ml). BD patients were divided into manic episode and depressive episode subgroups. We found that serum IGF-2 levels were reduced in both the mania and depression subgroups (mania: 67.19 ± 21.52 ng/ml, depression: 63.43 ± 20.67 ng/ml; P < 0.001), while no significant difference was observed between two groups (P > 0.05). Spearman correlation analyses revealed that the levels of serum IGF-2 were negatively correlated with the YMRS scores in BD patients (r = -0.522, P < 0.001). Furthermore, IGF-2 was found to be an independent contributor to the severity of symptoms in patients with manic episodes (B = -0.610, t = -5.299, P < 0.001). Conclusion: Lower serum IGF-2 levels were found in BD patients and correlated with the severity of the manic symptoms in these patients during manic episodes. These results suggest that reduced IGF-2 levels might be involved in the pathophysiology of BD, and serum IGF-2 could be a peripheral biomarker for the evaluation of the severity of manic symptoms in BD patients.

6.
Dev Cell ; 59(9): 1175-1191.e7, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38521055

ABSTRACT

In pyloric metaplasia, mature gastric chief cells reprogram via an evolutionarily conserved process termed paligenosis to re-enter the cell cycle and become spasmolytic polypeptide-expressing metaplasia (SPEM) cells. Here, we use single-cell RNA sequencing (scRNA-seq) following injury to the murine stomach to analyze mechanisms governing paligenosis at high resolution. Injury causes induced reactive oxygen species (ROS) with coordinated changes in mitochondrial activity and cellular metabolism, requiring the transcriptional mitochondrial regulator Ppargc1a (Pgc1α) and ROS regulator Nf2el2 (Nrf2). Loss of the ROS and mitochondrial control in Ppargc1a-/- mice causes the death of paligenotic cells through ferroptosis. Blocking the cystine transporter SLC7A11(xCT), which is critical in lipid radical detoxification through glutathione peroxidase 4 (GPX4), also increases ferroptosis. Finally, we show that PGC1α-mediated ROS and mitochondrial changes also underlie the paligenosis of pancreatic acinar cells. Altogether, the results detail how metabolic and mitochondrial changes are necessary for injury response, regeneration, and metaplasia in the stomach.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Metaplasia , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Regeneration , Stomach , Animals , Reactive Oxygen Species/metabolism , Mice , Ferroptosis/physiology , Stomach/pathology , Regeneration/physiology , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Metaplasia/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Gastric Mucosa/metabolism , Mice, Inbred C57BL , Chief Cells, Gastric/metabolism , Acinar Cells/metabolism , Mice, Knockout , Phospholipid Hydroperoxide Glutathione Peroxidase , Intercellular Signaling Peptides and Proteins
7.
J Phys Chem Lett ; 15(10): 2804-2814, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38440997

ABSTRACT

Mn2+-doped luminescent quantum dots play a vital role in the fields of optoelectronic materials and devices. The presence of five unpaired d electrons in Mn2+ ions facilitates spin-exchange interactions, profoundly influencing the spin state of the exciton and thereby impacting the optical behaviors. However, the involvement and specific effects of spin-exchange interactions on optical properties of Mn2+ in insulating bulk phosphors remain a subject of controversy, attributed to the scarcity of solid evidence and the interference of various factors. In this Perspective, we delve into the fundamentals and recent advancements concerning the Mn2+-Mn2+ spin-exchange interaction in Mn2+ luminescent materials. The discussion encompasses various aspects, such as types of magnetic coupling, the coupling mechanism in optical ground state and excited state, as well as effective measures for verification. This Perspective underscores the existing knowledge gaps in Mn2+-doped bulk phosphors, highlighting significant opportunities for further exploration and advancement in both fundamental and applied research within this domain.

8.
Appl Environ Microbiol ; 90(4): e0000724, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38501861

ABSTRACT

With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.


Subject(s)
Equol , Isoflavones , Animals , Humans , Mice , Rats , Swine , Equol/genetics , Equol/metabolism , Racemases and Epimerases , Chickens/metabolism , Isoflavones/metabolism , Oxidoreductases/metabolism
9.
Pediatr Res ; 95(4): 1041-1050, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38040988

ABSTRACT

BACKGROUNDS: This study aimed to identify risk factors for the progression of coronary artery lesions (CALs) in children with Kawasaki disease (KD) and to develop a nomogram prediction model. METHODS: This is a retrospective case-control study in which the participants were categorized into three groups based on the changes of the maximum Z score (Zmax) of coronary arteries at the 1-month follow-up compared with the baseline Zmax: CALs-progressed, CALs-improved, and CALs-unchanged. RESULTS: Of total 387 patients, 65 (27%), 319 (73%), and 3 (0.7%) patients were categorized into CALs-progressed group, CALs-improved group, and CALs-unchanged group, respectively. Six independent factors associated with CALs progression were identified, including initial IVIG resistance, baseline Zmax, the number of coronary arteries involved, C-reactive protein, albumin, and soluble interleukin-2 receptor (odds ratio: 7.19, 1.51, 2.32, 1.52, 0.86, and 1.46, respectively; all P-values < 0.01). The nomogram prediction model including these six independent risk factors yielded an area under the curve (AUC) of 0.80 (95% confidence interval, 0.74 to 0.86). The accuracy of this model reached 81.7% after the Monte-Carlo Bootstrapping 1000 repetitions. CONCLUSIONS: The nomogram prediction model can identify children at high risk for the progression of CALs at early stages. IMPACT: Six independent factors associated with CALs progression were identified, including initial IVIG resistance, baseline Zmax, the number of coronary arteries involved, CRP, ALB, and sIL-2R. The prediction model we constructed can identify children at high risk for the progression of CALs at early stages and help clinicians make individualized treatment plans. Prospective, multi-centered studies with larger sample sizes are warranted to validate the power of this prediction model in children with KD.


Subject(s)
Coronary Artery Disease , Mucocutaneous Lymph Node Syndrome , Child , Humans , Infant , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Immunoglobulins, Intravenous , Coronary Vessels/diagnostic imaging , Retrospective Studies , Case-Control Studies , Prospective Studies , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/complications
10.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110583

ABSTRACT

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Subject(s)
Hypertension, Renal , Kidney , Nephritis , Ubiquitin-Specific Proteases , Animals , Mice , Angiotensin II/metabolism , Epithelial Cells/metabolism , Fibrosis , Hypertension, Renal/enzymology , Hypertension, Renal/pathology , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Nephritis/enzymology , Nephritis/pathology , Ubiquitin-Specific Proteases/metabolism , Disease Models, Animal
11.
Nat Commun ; 14(1): 8052, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38052783

ABSTRACT

[6,6]-Phenyl-C61-butyric acid methyl ester (PCBM), a star molecule in the fullerene field, has found wide applications in materials science. Herein, electrosynthesis of buckyballs with fused-ring systems has been achieved through radical α-C-H functionalization of the side-chain ester for both PCBM and its analogue, [6,6]-phenyl-C61-propionic acid methyl ester (PCPM), in the presence of a trace amount of oxygen. Two classes of buckyballs with fused bi- and tricyclic carbocycles have been electrochemically synthesized. Furthermore, an unknown type of a bisfulleroid with two tethered [6,6]-open orifices can also be efficiently generated from PCPM. All three types of products have been confirmed by single-crystal X-ray crystallography. A representative intramolecularly annulated isomer of PCBM has been applied as an additive to inverted planar perovskite solar cells and boosted a significant enhancement of power conversion efficiency from 15.83% to 17.67%.

12.
Sci Rep ; 13(1): 20659, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001125

ABSTRACT

Traditional villages have received widespread attention from all walks of life based on important carriers of Chinese rural culture. The mutual superposition of natural and cultural factors may exacerbate the evolution of traditional village geographical patterns. To understand such relationships and effects, factors and degrees influencing traditional villages need to be determined. Here, we analysed the data of 724 traditional villages in Guizhou recognised by relevant national ministries and commissions in China using average nearest neighbour analysis, Tyson polygon analysis, nuclear density analysis and Geodector. The geographic pattern feature revealed that traditional villages, in general, are highly clustered regionally and have significant edge effects on administrative units. Different substrate environments result in significant spatial heterogeneity in village spatial density, clustering, surface undulation, sun exposure, and waterfront. The geographic pattern of traditional villages is mostly affected by the closest distance to river valleys, the types and number of intangible cultural heritage resources in the county, river gorge density, edge effect index, degree of county ethnic language use, and proportion of paddy fields to the regional area; and their combined effects influence and control the community structure. The results highlight the impact of nature and culture on the distribution of traditional villages, which helps traditional village conservation and scientific exploration of human-land relationship issues in the mountainous areas of Southwest China.


Subject(s)
Geographic Information Systems , Rural Population , Humans , China , Rivers , Cluster Analysis
13.
Cancer Immunol Immunother ; 72(11): 3739-3753, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37707586

ABSTRACT

CD19 CAR-T (chimeric antigen receptor-T) cell immunotherapy achieves a remission rate of approximately 70% in recurrent and refractory lymphoma treatment. However, the loss or reduction of CD19 antigen on the surface of lymphoma cells results in the escape of tumor cells from the immune killing of CD19 CAR-T cells (CAR19-T). Therefore, novel therapeutic strategies are urgently required. In this study, an anti-CD79b/CD3 bispecific antibody (BV28-OKT3) was constructed and combined with CAR19-T cells for B-cell lymphoma treatment. When the CD19 antigen was lost or reduced, BV28-OKT3 redirected CAR19-T cells to CD79b+ CD19- lymphoma cells; therefore, BV28-OKT3 overcomes the escape of CD79b+ CD19- lymphoma cells by the killing action of CAR19-T cells in vitro and in vivo. Furthermore, BV28-OKT3 triggered the antitumor function of CAR- T cells in the infusion product and boosted the antitumor immune response of bystander T cells, markedly improving the cytotoxicity of CAR19-T cells to lymphoma cells in vitro and in vivo. In addition, BV28-OKT3 elicited the cytotoxicity of donor-derived T cells toward lymphoma cells in vitro, which depended on the presence of tumor cells. Therefore, our findings provide a new clinical treatment strategy for recurrent and refractory B-cell lymphoma by combining CD79b/CD3 BsAb with CAR19-T cells.


Subject(s)
Antibodies, Bispecific , Lymphoma, B-Cell , Lymphoma , Humans , T-Lymphocytes , Antigens, CD19 , Muromonab-CD3 , Lymphoma/drug therapy , Immunotherapy, Adoptive/methods
14.
J Phys Chem Lett ; 14(34): 7773-7779, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37615501

ABSTRACT

Photoinduced self-trapped exciton emission is common in soft matter metal halide semiconductors, whereas analogous phenomena in metal halide insulators with localized emitting centers and delayed satellite emission have rarely been identified. In this study, a new zero-dimensional Mn(II) hybrid of [3DPTPP]MnBr4 (3DPTPP = (3-(dimethylamino)propyl)(triphenyl)phosphonium) with only one crystallographic Mn2+ site but dual emission is reported. The delayed red emission (∼630 nm) is successfully assigned to a satellite of the green-emissive (∼530 nm) MnBr42- tetrahedron shifted by N-H vibration (∼2500 cm-1), directly evidenced by the Raman spectra and further supported by density functional theory calculation. The photoluminescence decay curves demonstrate their same origin, but the red emission exhibits a delayed process. The temperature- and pressure-dependent PL spectra, temperature-dependent distortion of the MnBr42- tetrahedron, and light polarization spectra confirmed the consistency and distinctness of the dual emission. This study will inspire further research on self-trapped optoelectronic processes in soft metal halides.

15.
Angew Chem Int Ed Engl ; 62(36): e202306822, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37468435

ABSTRACT

We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals with d x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.

16.
Clin Neurol Neurosurg ; 230: 107791, 2023 07.
Article in English | MEDLINE | ID: mdl-37269605

ABSTRACT

BACKGROUND: The transradial approach (TRA) has become popular for diagnostic cerebral angiography. However, this approach is still used less often because of problematic formation of the Simmons catheter. The purpose of this study was to introduce a pigtail catheter exchange technique for Simmons catheter formation to improve the success rates with a shorter operation time and without increasing complications. METHODS: This retrospective study included consecutive patients eligible for right TRA cerebral angiography at our institution from 2021. To introduce the technique, the cerebral angiogram of formation of the Simmons catheter in the type II aortic arch was constructed. Patient demographic and angiographic data were collected. RESULTS: In total, 295 cerebral angiographies were evaluated. There were 155 (52.5 %), 83 (28.1 %), 39 (13.2 %), and 18 (6.1 %) patients with types I, II, and III aortic arches and bovine arch, respectively. The total fluoroscopy time, operation time and radiation exposure were 6.3 ± 4.4 min, 17.7 ± 8.3 min and 559.2 ± 197.3 mGy, respectively. The Simmons catheter was successfully formed in 294 of 295 patients, with a success rate of 99.6 %, confirming an effective technique for right TRA cerebral angiography. No severe complications were observed in any patient. CONCLUSIONS: Pigtail catheter exchange may be an effective and safe technique for right TRA cerebral angiography. The findings of this report prompted institutions to apply this technique clinically and can serve as a basis for future trials focused on TRA cerebral angiography.


Subject(s)
Carotid Artery Diseases , Radial Artery , Humans , Cerebral Angiography/methods , Retrospective Studies , Radial Artery/diagnostic imaging , Radial Artery/surgery , Catheters
17.
Mater Horiz ; 10(9): 3476-3487, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37233737

ABSTRACT

Mechanoluminescent (ML) materials have shown promising prospects for various applications, e.g. in stress sensing, information anti-counterfeiting and bio stress imaging fields. However, the development of trap-controlled ML materials is still limited, because the trap formation mechanism is not always clear. Here, inspired by a defect-induced Mn4+ → Mn2+ self-reduction process in suitable host crystal structures, a cation vacancy model is creatively proposed to determine the potential trap-controlled ML mechanism. Combined with the theoretical prediction and experimental results, both the self-reduction process and ML mechanism are clarified in detail, where the contribution of and defects dominates the ML luminescent process. Electrons/holes are mainly captured by the anionic/cationic defects, followed by the combination of electrons and holes to transfer energy to the Mn2+ 3d states under mechanical stimuli. Based on the multi-mode luminescent features excited by X-ray, 980 nm laser and 254 nm UV lamp, together with the excellent persistent luminescence and ML, a potential application in advanced anti-counterfeiting is demonstrated. These results will deepen the understanding of the defect-controlled ML mechanism, and inspire more defect-engineering strategies to develop more high-performance ML phosphors for practical application.

18.
ACS Appl Mater Interfaces ; 15(21): 25704-25712, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37198907

ABSTRACT

Understanding the photoionic mechanism in optoelectronic materials offers significant potential for various applications in the fields of laser, data/energy storage, signal processing, and ionic batteries. However, the research on such light-matter interaction using photons of sub-bandgap energy is scarce, especially for those transparent materials with photoactive centers that would generate a local field upon photoillumination. This research investigates the photoionic effect in Yb3+/Er3+ doped tellurate glass with Ag nanoparticles (NPs) embedded. It is found that the photogenerated electric dipole of Yb3+/Er3+ ions and local field of Ag NPs could block the Ag+ migration in an external electric field. The blocking phenomenon of Ag NPs is the so-called Coulomb blocking effect (ascribed to its quantum confinement effect), which would be further enhanced by the additional photoinduced localized surface plasmon resonance (LSPR) effect. Interestingly, the photoresponsive electric dipole of lanthanide ions could cause plasmon oscillation of Ag NPs, resulting in a partial release of the blockade of lanthanide ions and enhanced blockade via quantum confinement of Ag NPs. A model device is proposed according to the photoresistive behavior. The research gives another perspective on the photoionic effect via the photoresponsive local field generated by photoactive centers in optofunctional materials.

19.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-37050924

ABSTRACT

Background: 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose (ß-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers. Objective: To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose on human hepatocellular carcinoma HepG2 cells. Design: A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose (ß-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by ß-PGG treatment. Reasult: It was found that ß-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells. Conclusion: This study has shown that network pharmacology can accurately predict the target of ß-PGG's anti-hepatocellular carcinoma action. Moreover, it was evident that ß-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.

20.
Nat Commun ; 14(1): 822, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788228

ABSTRACT

Peritoneal metastasis is the leading cause of death for gastrointestinal cancers. The native and therapy-induced ascites ecosystems are not fully understood. Here, we characterize single-cell transcriptomes of 191,987 ascites cancer/immune cells from 35 patients with/without gastric cancer peritoneal metastasis (GCPM). During GCPM progression, an increase is seen of monocyte-like dendritic cells (DCs) that are pro-angiogenic with reduced antigen-presenting capacity and correlate with poor gastric cancer (GC) prognosis. We also describe the evolution of monocyte-like DCs and regulatory and proliferative T cells following therapy. Moreover, we track GC evolution, identifying high-plasticity GC clusters that exhibit a propensity to shift to a high-proliferative phenotype. Transitions occur via the recently described, autophagy-dependent plasticity program, paligenosis. Two autophagy-related genes (MARCKS and TXNIP) mark high-plasticity GC with poorer prognosis, and autophagy inhibitors induce apoptosis in patient-derived organoids. Our findings provide insights into the developmental trajectories of cancer/immune cells underlying GCPM progression and therapy resistance.


Subject(s)
Peritoneal Neoplasms , Stomach Neoplasms , Humans , Ascites/genetics , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/secondary , Peritoneum/pathology , Stomach Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...