Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 64(1): 63-69, 2018.
Article in English | MEDLINE | ID: mdl-28661910

ABSTRACT

Reynolds shear stress (RSS) has served as a metric for the effect of turbulence on hemolysis. Forstrom (1969) and Sallam and Hwang (1984) determined the RSS threshold for hemolysis to be 50,000 and 4,000 dyne/cm, respectively, using a turbulent jet. Despite the order of magnitude discrepancy, the threshold by Sallam and Hwang has been frequently cited for hemolytic potential in blood pumps. We recreated a Sallam apparatus (SA) to resolve this discrepancy and provide additional data to be used in developing a more accurate hemolysis model. Hemolysis was measured over a large range of Reynolds numbers (Re) (Re = 1,000-80,000). Washed bovine red blood cells (RBCs) were injected into the free jet of phosphate buffered saline, and hemolysis was quantified using a percent hemolysis, Hp = h (100 - hematocrit [HCT])/Hb, where h (mg/dl) is free hemoglobin and Hb (mg/dl) is total hemoglobin. Reynolds shear stress was calculated using two-dimensional laser Doppler velocimetry. Reynolds shear stress of ≥30,000 dyne/cm corresponding to Re of ≥60,000 appeared to cause hemolysis (p < 0.05). This RSS is an order of magnitude greater than the RSS threshold that Sallam and Hwang suggested, and it is similar to Forstrom's RSS threshold. This study resolved a long-standing uncertainty regarding the critical values of RSS for hemolysis and may provide a foundation for a more accurate hemolysis model.


Subject(s)
Erythrocytes/cytology , Hematologic Tests/methods , Hemolysis/physiology , Stress, Mechanical , Animals , Blood Flow Velocity , Cattle , Hematocrit , Hemoglobins , Humans , Laser-Doppler Flowmetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...