Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3327, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286591

ABSTRACT

Atlantic Niño, the dominant climate mode in the equatorial Atlantic, is known to remotely force a La Niña-like response in the Pacific, potentially affecting seasonal climate predictions. Here, we use both observations and large-ensemble simulations to explore the physical mechanisms linking the Atlantic to the Pacific. Results indicate that an eastward propagating atmospheric Kelvin wave from the Atlantic, through the Indian Ocean, to the Pacific is the primary pathway. Interaction of this Kelvin wave with the orography of the Maritime Continent induces orographic moisture convergence, contributing to the generation of a local Walker Cell over the Maritime Continent-Western Pacific area. Moreover, land friction over the Maritime Continent dissipates Kelvin wave energy, affecting the strength of the Bjerknes feedback and thus the development of the La Niña-like response. Therefore, improving the representation of land-atmosphere-ocean interactions over the Maritime Continent may be fundamental to realistically simulate Atlantic Niño's impact on El Niño-Southern Oscillation.

2.
Sci Adv ; 9(15): eadd9364, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37043583

ABSTRACT

Volcanic aerosol forcing can affect global climate, but its role in climate prediction remains poorly understood. We isolate the impact of volcanic eruptions on multiyear-to-decadal climate prediction skill by comparing two suites of initialized decadal hindcasts conducted with and without historical volcanic forcing. Unexpectedly, the inclusion of volcanic forcing in the prediction system significantly degrades the forecast skill of detrended multiyear-to-decadal sea surface temperature (SST) variability in the central-eastern tropical Pacific. The ensemble mean hindcasts produce multiyear-to-decadal tropical Pacific SST cooling in response to large tropical volcanic eruptions through thermodynamic and El Niño-Southern Oscillation (ENSO)-like dynamic processes. However, in observations, these eruptions coincided with tropical Pacific warming, which is well predicted by the no-volcano hindcasts and, hence, is likely related to internal climate variability. Improved model representation of volcanic response and its interaction with internal climate variability is required to advance prediction of tropical Pacific decadal variability and associated global impacts.

3.
J Adv Model Earth Syst ; 14(5): e2021MS002868, 2022 May.
Article in English | MEDLINE | ID: mdl-35865233

ABSTRACT

The Intergovernmental Panel on Climate Change Fifth Assessment Report lists sea-level rise as one of the major future climate challenges. Based on pre-industrial and historical-and-future climate simulations with the Community Earth System Model, we analyze the projected sea-level rise in the Northwest Atlantic Ocean with two sets of simulations at different horizontal resolutions. Compared with observations, the low resolution (LR) model simulated Gulf Stream does not separate from the shore but flows northward along the entire coast, causing large biases in regional dynamic sea level (DSL). The high resolution (HR) model improves the Gulf Stream representation and reduces biases in regional DSL. Under the RCP8.5 future climate scenario, LR projects a DSL trend of 1.5-2 mm/yr along the northeast continental shelf (north of 40° N), which is 2-3 times the trend projected by HR. Along the southeast shelf (south of 35° N), HR projects a DSL trend of 0.5-1 mm/yr while the DSL trend in LR is statistically insignificant. The different spatial patterns of DSL changes are attributable to the different Gulf Stream reductions in response to a weakening Atlantic Meridional Overturning Circulation. Due to its poor representation of the Gulf Stream, LR projects larger (smaller) current decreases along the north (south) east continental slope compared to HR. This leads to larger (smaller) trends of DSL rise along the north (south) east shelf in LR than in HR. The results of this study suggest that the better resolved ocean circulations in HR can have significant impacts on regional DSL simulations and projections.

4.
Nat Commun ; 13(1): 2660, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551195

ABSTRACT

Many fish and marine organisms are responding to our planet's changing climate by shifting their distribution. Such shifts can drive international conflicts and are highly problematic for the communities and businesses that depend on these living marine resources. Advances in climate prediction mean that in some regions the drivers of these shifts can be forecast up to a decade ahead, although forecasts of distribution shifts on this critical time-scale, while highly sought after by stakeholders, have yet to materialise. Here, we demonstrate the application of decadal-scale climate predictions to the habitat and distribution of marine fish species. We show statistically significant forecast skill of individual years that outperform baseline forecasts 3-10 years ahead; forecasts of multi-year averages perform even better, yielding correlation coefficients in excess of 0.90 in some cases. We also demonstrate that the habitat shifts underlying conflicts over Atlantic mackerel fishing rights could have been foreseen. Our results show that climate predictions can provide information of direct relevance to stakeholders on the decadal-scale. This tool will be critical in foreseeing, adapting to and coping with the challenges of a changing future climate, particularly in the most ocean-dependent nations and communities.


Subject(s)
Climate Change , Perciformes , Animals , Aquatic Organisms , Climate , Ecosystem
5.
Sci Adv ; 7(41): eabh3592, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34613764

ABSTRACT

Climate models are essential tools for investigating intrinsic North Atlantic variability related to variations in the Atlantic meridional overturning circulation (AMOC), but recent observations have called into question the fidelity of models that emphasize the importance of Labrador Sea processes. A multicentury preindustrial climate simulation that resolves ocean mesoscale eddies has a realistic representation of key observed subpolar Atlantic phenomena, including the dominance of density-space overturning in the eastern subpolar gyre, and thus provides uniquely credible context for interpreting short observational records. Despite weak mean surface diapycnal transformation in the Labrador Sea, multidecadal AMOC variability can be traced to anomalous production of dense Labrador Sea Water with buoyancy forcing in the western subpolar gyre playing a substantial driving role.

6.
Nat Commun ; 11(1): 4390, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873800

ABSTRACT

The Amazon river basin receives ~2000 mm of precipitation annually and contributes ~17% of global river freshwater input to the oceans; its hydroclimatic variations can exert profound impacts on the marine ecosystem in the Amazon plume region (APR) and have potential far-reaching influences on hydroclimate over the tropical Atlantic. Here, we show that an amplified seasonal cycle of Amazonia precipitation, represented by the annual difference between maximum and minimum values, during the period 1979-2018, leads to enhanced seasonalities in both Amazon river discharge and APR ocean salinity. An atmospheric moisture budget analysis shows that these enhanced seasonal cycles are associated with similar amplifications in the atmospheric vertical and horizontal moisture advections. Hierarchical sensitivity experiments using global climate models quantify the relationships of these enhanced seasonalities. The results suggest that an intensified hydroclimatological cycle may develop in the Amazonia atmosphere-land-ocean coupled system, favouring more extreme terrestrial and marine conditions.

7.
Geophys Res Lett ; 47(1): e2019GL085397, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-32713972

ABSTRACT

A coordinated set of large ensemble atmosphere-only simulations is used to investigate the impacts of observed Arctic sea ice-driven variability (SIDV) on the atmospheric circulation during 1979-2014. The experimental protocol permits separating Arctic SIDV from internal variability and variability driven by other forcings including sea surface temperature and greenhouse gases. The geographic pattern of SIDV is consistent across seven participating models, but its magnitude strongly depends on ensemble size. Based on 130 members, winter SIDV is ~0.18 hPa2 for Arctic-averaged sea level pressure (~1.5% of the total variance), and ~0.35 K2 for surface air temperature (~21%) at interannual and longer timescales. The results suggest that more than 100 (40) members are needed to separate Arctic SIDV from other components for dynamical (thermodynamical) variables, and insufficient ensemble size always leads to overestimation of SIDV. Nevertheless, SIDV is 0.75-1.5 times as large as the variability driven by other forcings over northern Eurasia and Arctic.

8.
Nat Commun ; 11(1): 2166, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358499

ABSTRACT

The California Current System (CCS) sustains economically valuable fisheries and is particularly vulnerable to ocean acidification, due to its natural upwelling of carbon-enriched waters that generate corrosive conditions for local ecosystems. Here we use a novel suite of retrospective, initialized ensemble forecasts with an Earth system model (ESM) to predict the evolution of surface pH anomalies in the CCS. We show that the forecast system skillfully predicts observed surface pH variations a year in advance over a naive forecasting method, with the potential for skillful prediction up to five years in advance. Skillful predictions of surface pH are mainly derived from the initialization of dissolved inorganic carbon anomalies that are subsequently transported into the CCS. Our results demonstrate the potential for ESMs to provide skillful predictions of ocean acidification on large scales in the CCS. Initialized ESMs could also provide boundary conditions to improve high-resolution regional forecasting systems.

9.
Science ; 352(6293): 1527, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27339976

ABSTRACT

Clement et al (Reports, 16 October 2015, p. 320) claim that the Atlantic Multidecadal Oscillation (AMO) is a thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing and that ocean circulation changes have no role in causing the AMO. These claims are not justified. We show that ocean dynamics play a central role in the AMO.

SELECTION OF CITATIONS
SEARCH DETAIL
...