Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 33(9): ar85, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35704464

ABSTRACT

Chromosome biorientation is promoted by the four-member chromosomal passenger complex (CPC) through phosphorylation of incorrect kinetochore-microtubule attachments. During chromosome alignment, the CPC localizes to the inner centromere, the inner kinetochore, and spindle microtubules. Here we show that a small domain of the CPC subunit INCENP/Sli15 is required to target the complex to all three of these locations in budding yeast. This domain, the single alpha helix (SAH), is essential for phosphorylation of outer kinetochore substrates, chromosome segregation, and viability. By restoring the CPC to each of its three locations through targeted mutations and fusion constructs, we determined their individual contributions to chromosome biorientation. We find that only the inner centromere localization is sufficient for cell viability on its own. However, when combined, the inner kinetochore and microtubule binding activities are also sufficient to promote accurate chromosome segregation. Furthermore, we find that the two pathways target the CPC to different kinetochore attachment states, as the inner centromere-targeting pathway is primarily responsible for bringing the complex to unattached kinetochores. We have therefore discovered that two parallel localization pathways are each sufficient to promote CPC activity in chromosome biorientation, both depending on the SAH domain of INCENP/Sli15.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomycetales , Aurora Kinase B/metabolism , Centromere/metabolism , Chromosome Segregation , Kinetochores/metabolism , Microtubules/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism
2.
Protein Eng Des Sel ; 27(3): 73-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24402332

ABSTRACT

Loops or unordered regions of a protein are structurally dynamic and are strongly implicated in activity, stability and proteolytic susceptibility of proteins. Diminished activity of proteins at lower temperatures is considered to be due to compromised dynamics of the protein at lower temperatures. To evolve an active mesophilic lipase (Bacillus subtilis) at low temperatures, we subjected all the loop residues (n = 88) to site saturation mutagenesis (SSM). Based on a three-level screening protocol, we identified 14 substitutions, among 16,000 mutant population, which contributed to a substantial increase in activity at 5 °C. Based on the preliminary activity of recombinants at several temperatures, 5 substitutions among the 14 were found to be beneficial. A recombinant of these five mutations, named as 5CR, exhibited 7-fold higher catalytic efficiency than wild-type (WT) lipase at 10 °C. All the mutants, individually and in a recombinant (5CR), were characterized by substrate-binding parameters, melting temperatures and secondary structure. 5CR was similar to WT in substrate preferences and showed a significant improvement in activity at both lower and higher temperatures compared with the WT. To establish the contribution of mutations on the dynamics of the protein, we performed 100-ns molecular dynamics (MD) simulations on the WT and mutant lipase at 10 and 37 °C. The root mean square fluctuations (RMSFs) indeed showed that the mutations enhance the protein dynamics locally in the loop region having a catalytic residue, which may help in improved activities at lower temperatures.


Subject(s)
Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Lipase/chemistry , Lipase/genetics , Mutagenesis, Site-Directed/methods , Bacillus subtilis/enzymology , Bacterial Proteins/metabolism , Cold Temperature , Enzyme Stability , Lipase/metabolism , Molecular Dynamics Simulation , Mutation , Protein Conformation
3.
Protein Sci ; 22(7): 904-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23625694

ABSTRACT

Studying alterations in biophysical and biochemical behavior of enzymes in the presence of organic solvents and the underlying cause(s) has important implications in biotechnology. We investigated the effects of aqueous solutions of polar organic solvents on ester hydrolytic activity, structure and stability of a lipase. Relative activity of the lipase monotonically decreased with increasing concentration of acetone, acetonitrile, and DMF but increased at lower concentrations (upto ~20% v/v) of dimethylsulfoxide, isopropanol, and methanol. None of the organic solvents caused any appreciable structural change as evident from circular dichorism and NMR studies, thus do not support any significant role of enzyme denaturation in activity change. Change in 2D [15N, 1H]-HSQC chemical shifts suggested that all the organic solvents preferentially localize to a hydrophobic patch in the active-site vicinity and no chemical shift perturbation was observed for residues present in protein's core. This suggests that activity alteration might be directly linked to change in active site environment only. All organic solvents decreased the apparent binding of substrate to the enzyme (increased Km ); however significantly enhanced the kcat . Melting temperature (Tm ) of lipase, measured by circular dichroism and differential scanning calorimetry, altered in all solvents, albeit to a variable extent. Interestingly, although the effect of all organic solvents on various properties on lipase is qualitatively similar, our study suggest that magnitudes of effects do not appear to follow bulk solvent properties like polarity and the solvent effects are apparently dictated by specific and local interactions of solvent molecule(s) with the protein.


Subject(s)
Acetone/chemistry , Alcohols/chemistry , Lipase/chemistry , Lipase/metabolism , Acetonitriles/chemistry , Acetylation , Binding Sites , Calorimetry, Differential Scanning , Circular Dichroism , Enzyme Stability , Hydrolysis , Nuclear Magnetic Resonance, Biomolecular , Solvents/chemistry
4.
Protein Eng Des Sel ; 26(4): 317-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23404771

ABSTRACT

Nearly 65% of the surface of a lipase, from Bacillus subtilis, is occupied by the loops. Since the loops are dynamic components of a protein, located on the surface and are tolerant to substitutions, we subjected all 91 amino acids of the loops to site saturation mutagenesis to identify mutations that improve the stability and activity of lipase in dimethyl sulfoxide (DMSO). Based on a novel screening system, we have identified six positions in the lipase, from a population of 18,000 transformants that contributed to higher activity in DMSO. We combined all the six mutations into one lipase gene (6SR), purified the protein to study its activity and structural properties. 6SR has shown eight times higher catalytic turnover in 60% DMSO and showed a marginal shift in DMSO tolerance. 6SR showed a similar secondary structure with little alteration in tertiary structure. The melting temperature of 6SR is lower than the wild type and binds the least to hydrophobic fluorescent probes, indicating that the surface has become more polar in nature. This study provides clues to the role of loop amino acids in modulating the activity in organic solvents.


Subject(s)
Bacillus subtilis/enzymology , Dimethyl Sulfoxide/chemistry , Lipase/chemistry , Protein Engineering , Models, Molecular , Mutagenesis , Mutation , Protein Structure, Secondary , Solvents/chemistry
5.
Biochim Biophys Acta ; 1804(9): 1850-6, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20599630

ABSTRACT

Shape of the protein stability curves changes to achieve higher melting temperature. Broadly, these changes have been classified as upward shift (increased G(s)), rightward shift (increase in T(s)) and flattening of the stability curves (decrease in C(p)). Comparative studies on homologous mesophilic-thermophilic protein pairs highlighted the differential contribution of these three strategies amongst proteins. But unambiguous way of identification of the strategies, which will be preferred for a protein, is still not achieved. We have performed comparative thermodynamic studies using differential scanning calorimeter (DSC) on thermostable variants of a lipase from Bacillus subtilis. These variants are products of 1, 2, 3 and 4 rounds of directed evolution and harbor mutations having definite contribution in thermostability unlike natural thermophilic proteins. We have shown that upward and rightward shift in stability curves are prime strategies in this lipase. Our results along with that from the other study on laboratory evolved xylanase A suggest that optimization of suboptimal thermodynamic parameters is having a dominant influence in selection of thermodynamic strategies for higher thermostability.


Subject(s)
Bacillus subtilis/enzymology , Directed Molecular Evolution , Lipase/chemistry , Lipase/genetics , Mutation/genetics , Bacillus subtilis/genetics , Calorimetry, Differential Scanning , Enzyme Stability , Hot Temperature , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...