Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 38(18): 4288-4300, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29632166

ABSTRACT

HIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer's disease (AD), which is characterized by amyloid-ß (Aß) plaques. Plaques are formed by aggregation of Aß oligomers, which may be the toxic species in AD pathogenesis, and oligomers are generated by cleavage of amyloid precursor protein (APP) by ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD. Although studies have also found evidence of altered APP processing in HIV+ patients, it is unknown whether increased BACE1 expression or Aß oligomer production is a common neuropathological feature of HAND. Moreover, it is unknown whether BACE1 or APP is involved in the excitotoxic, NMDAR-dependent component of HIV-associated neurotoxicity in vitro Herein, we hypothesize that HIV-associated neurotoxicity is mediated by NMDAR-dependent elevation of BACE1 and subsequent altered processing of APP. Supporting this, we observed elevated levels of BACE1 and Aß oligomers in CNS of male and female HIV+ patients. In a model of HIV-associated neurotoxicity in which rat neurons are treated with supernatants from HIV-infected human monocyte-derived macrophages, we observed NMDAR-dependent elevation of BACE1 protein. NMDA treatment also increased BACE1 and both pharmacological BACE1 inhibition and genetic loss of APP were partially neuroprotective. Moreover, in APP knock-out (APP-/-) mouse neurons, NMDA-induced toxicity was BACE1 independent, indicating that cytotoxicity of BACE1 is dependent upon APP cleavage. Our findings suggest that increased BACE1 and the resultant Aß oligomer production may contribute to HIV-associated neuropathogenesis and inhibition of BACE1 could have therapeutic potential in HANDs.SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HANDs) represent a range of cognitive impairments affecting ∼50% of HIV+ individuals. The specific causes of HAND are unknown, but evidence suggests that HIV-infected macrophage infiltration into the brain may cause neuronal damage. Herein, we show that neurons treated with conditioned media from HIV-infected macrophages have increased expression of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein implicated in Alzheimer's disease pathogenesis. Moreover, inhibition of BACE1 prevented neuronal loss after conditioned media exposure, but had no effect on HIV-associated neurotoxicity in neurons lacking its cleavage target amyloid precursor protein. We also observed increased BACE1 expression in HIV+ patient brain tissue, confirming the potential relevance of BACE1 as a therapeutic target in HANDs.


Subject(s)
AIDS Dementia Complex/genetics , AIDS Dementia Complex/pathology , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Aspartic Acid Endopeptidases/genetics , HIV Infections/pathology , Neurons/pathology , Adult , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agonists/toxicity , Female , Hippocampus/metabolism , Humans , Macrophages/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , N-Methylaspartate/toxicity , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics
2.
Am J Pathol ; 187(1): 91-109, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27993242

ABSTRACT

Mounting evidence implicates antiretroviral (ARV) drugs as potential contributors to the persistence and evolution of clinical and pathological presentation of HIV-associated neurocognitive disorders in the post-ARV era. Based on their ability to induce endoplasmic reticulum (ER) stress in various cell types, we hypothesized that ARV-mediated ER stress in the central nervous system resulted in chronic dysregulation of the unfolded protein response and altered amyloid precursor protein (APP) processing. We used in vitro and in vivo models to show that HIV protease inhibitor (PI) class ARVs induced neuronal damage and ER stress, leading to PKR-like ER kinase-dependent phosphorylation of the eukaryotic translation initiation factor 2α and enhanced translation of ß-site APP cleaving enzyme-1 (BACE1). In addition, PIs induced ß-amyloid production, indicative of increased BACE1-mediated APP processing, in rodent neuroglial cultures and human APP-expressing Chinese hamster ovary cells. Inhibition of BACE1 activity protected against neuronal damage. Finally, ARVs administered to mice and SIV-infected macaques resulted in neuronal damage and BACE1 up-regulation in the central nervous system. These findings implicate a subset of PIs as potential mediators of neurodegeneration in HIV-associated neurocognitive disorders.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , HIV Protease Inhibitors/pharmacology , Protein Biosynthesis/drug effects , Protein Processing, Post-Translational/drug effects , Up-Regulation/drug effects , Animals , Axons/drug effects , Axons/metabolism , Axons/pathology , Cells, Cultured , Macaca , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Protein Stability/drug effects , Rats , Ritonavir/pharmacology , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...