Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Sci Food Agric ; 99(6): 3034-3044, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30488472

ABSTRACT

BACKGROUND: Cassava leaves are an abundant global agricultural residue because the roots are a major source of dietary carbohydrates. Although cassava leaves are high in protein, the protein is not bioavailable. This work aimed to convert cassava leaves to a bioavailable protein-rich animal feed ingredient using high-protein yeasts. RESULTS: The structural proteins (ca 200 g kg-1 d.b.) from sundried cassava leaves were solubilized by mild alkali pretreatment, and the resulting cassava leaf hydrolysate (CLH) was used to screen for growth of 46 high-protein yeasts from 30 species. Promising candidates from the initial screen cultivated at a 10 mL scale demonstrated increases in relative abundance of essential amino acids over that of CLH. In particular, lysine, growth-limiting for some livestock, was increased up to 226% over the CLH content. One yeast, Pichia kudriavzevii UCDFST 11-602, was grown in 3 L of CLH in a bioreactor to examine the scale-up potential of the yeast protein production. While glucose was completely consumed, yeast growth exited log phase before depleting either carbon or nitrogen, suggesting other growth-limiting factors at the larger scale. CONCLUSIONS: High-value animal feed with enriched essential amino acid profiles can be produced by yeasts grown on agricultural residues. Yeasts convert structural protein solubilized from cassava leaves to essential amino acid-enriched, digestible protein. The low carbohydrate content of the leaves (ca 200 g kg-1 d.b.), however, necessitated glucose supplementation for yeast growth. © 2018 Society of Chemical Industry.


Subject(s)
Manihot/microbiology , Pichia/metabolism , Plant Leaves/metabolism , Animal Feed/analysis , Biomass , Biotransformation , Manihot/chemistry , Manihot/metabolism , Pichia/growth & development , Plant Leaves/chemistry , Plant Leaves/microbiology
2.
Blood Adv ; 2(5): 549-558, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29519898

ABSTRACT

Activated factor XIIa (FXIIa) is a serine protease that has received a great deal of interest in recent years as a potential target for the development of new antithrombotics. Despite the strong interest in obtaining structural information, only the structure of the FXIIa catalytic domain in its zymogen conformation is available. In this work, reproducible experimental conditions found for the crystallization of human plasma ß-FXIIa and crystal growth optimization have led to determination of the first structure of the active form of the enzyme. Two crystal structures of human plasma ß-FXIIa complexed with small molecule inhibitors are presented herein. The first is the noncovalent inhibitor benzamidine. The second is an aminoisoquinoline containing a boronic acid-reactive group that targets the catalytic serine. Both benzamidine and the aminoisoquinoline bind in a canonical fashion typical of synthetic serine protease inhibitors, and the protease domain adopts a typical chymotrypsin-like serine protease active conformation. This novel structural data explains the basis of the FXII activation, provides insights into the enzymatic properties of ß-FXIIa, and is a great aid toward the further design of protease inhibitors for human FXIIa.


Subject(s)
Factor XII/chemistry , Benzamidines/chemistry , Boronic Acids/chemistry , Crystallization/methods , Crystallography, X-Ray , Databases, Protein , Factor XII/antagonists & inhibitors , Humans , Molecular Structure , Protein Binding , Software
3.
ACS Med Chem Lett ; 8(3): 321-326, 2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28337324

ABSTRACT

We report the discovery of a new potent allosteric effector of sickle cell hemoglobin, GBT440 (36), that increases the affinity of hemoglobin for oxygen and consequently inhibits its polymerization when subjected to hypoxic conditions. Unlike earlier allosteric activators that bind covalently to hemoglobin in a 2:1 stoichiometry, 36 binds with a 1:1 stoichiometry. Compound 36 is orally bioavailable and partitions highly and favorably into the red blood cell with a RBC/plasma ratio of ∼150. This partitioning onto the target protein is anticipated to allow therapeutic concentrations to be achieved in the red blood cell at low plasma concentrations. GBT440 (36) is in Phase 3 clinical trials for the treatment of sickle cell disease (NCT03036813).

4.
J Med Chem ; 57(6): 2683-91, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24520947

ABSTRACT

Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridazines/chemical synthesis , Pyridazines/pharmacology , Spleen/enzymology , Amides/chemical synthesis , Amides/pharmacology , Animals , Computational Biology , Computer Simulation , Drug Design , Ether-A-Go-Go Potassium Channels/drug effects , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Mutagenesis/drug effects , Mutagenicity Tests , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/pharmacokinetics , Rats , Spleen/drug effects , Structure-Activity Relationship , X-Ray Diffraction
5.
Bioorg Med Chem Lett ; 23(9): 2522-6, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23541670

ABSTRACT

We report the discovery of a novel series of ATP-competitive Janus kinase 3 (JAK3) inhibitors based on the 5H-pyrrolo[2,3-b]pyrazine scaffold. The initial leads in this series, compounds 1a and 1h, showed promising potencies, but a lack of selectivity against other isoforms in the JAK family. Computational and crystallographic analysis suggested that the phenyl ether moiety possessed a favorable vector to achieve selectivity. Exploration of this vector resulted in the identification of 12b and 12d, as potent JAK3 inhibitors, demonstrating improved JAK family and kinase selectivity.


Subject(s)
Janus Kinase 3/antagonists & inhibitors , Phenyl Ethers/chemistry , Protein Kinase Inhibitors/chemistry , Pyridazines/chemistry , Pyrroles/chemistry , Binding Sites , Catalytic Domain , Drug Evaluation, Preclinical , Janus Kinase 3/metabolism , Molecular Docking Simulation , Phenyl Ethers/chemical synthesis , Phenyl Ethers/metabolism , Protein Binding , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 23(9): 2793-800, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23540648

ABSTRACT

Using a structure based design approach we have identified a series of indazole substituted pyrrolopyrazines, which are potent inhibitors of JAK3. Intramolecular electronic repulsion was used as a strategy to induce a strong conformational bias within the ligand. Compounds bearing this conformation participated in a favorable hydrophobic interaction with a cysteine residue in the JAK3 binding pocket, which imparted high selectivity versus the kinome and improved selectivity within the JAK family.


Subject(s)
Drug Design , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Binding Sites , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Indazoles/chemistry , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , Janus Kinase 3/metabolism , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Pyrazines/chemical synthesis , Pyrazines/chemistry , Pyrazines/metabolism , Structure-Activity Relationship
7.
J Med Chem ; 56(1): 345-56, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23214979

ABSTRACT

The Janus kinases (JAKs) are involved in multiple signaling networks relevant to inflammatory diseases, and inhibition of one or more members of this class may modulate disease activity or progression. We optimized a new inhibitor scaffold, 3-amido-5-cyclopropylpyrrolopyrazines, to a potent example with reasonable kinome selectivity, including selectivity for JAK3 versus JAK1, and good biopharmaceutical properties. Evaluation of this analogue in cellular and in vivo models confirmed functional selectivity for modulation of a JAK3/JAK1-dependent IL-2 stimulated pathway over a JAK1/JAK2/Tyk2-dependent IL-6 stimulated pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Cyclopropanes/chemical synthesis , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 3/antagonists & inhibitors , Pyrazines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Oral , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Caco-2 Cells , Crystallography, X-Ray , Cyclopropanes/pharmacokinetics , Cyclopropanes/pharmacology , Gene Knockdown Techniques , High-Throughput Screening Assays , Humans , Interleukin-2/physiology , Janus Kinase 1/genetics , Janus Kinase 1/metabolism , Janus Kinase 3/genetics , Janus Kinase 3/metabolism , Mice , Models, Molecular , Pyrazines/pharmacokinetics , Pyrazines/pharmacology , Pyrroles/pharmacokinetics , Pyrroles/pharmacology , RNA, Small Interfering/genetics , Rats , Receptors, Interleukin-6/physiology , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
8.
Bioorg Med Chem Lett ; 20(15): 4614-9, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20584604

ABSTRACT

Conformational modeling has been successfully applied to the design of cyclic bioisosteres used to replace a conformationally rigid amide bond in a series of thiophene carboxylate inhibitors of HCV NS5B polymerase. Select compounds were equipotent with the original amide series. Single-point mutant binding studies, in combination with inhibition structure-activity relationships, suggest this new series interacts at the Thumb-II domain of NS5B. Inhibitor binding at the Thumb-II site was ultimately confirmed by solving a crystal structure of 8b complexed with NS5B.


Subject(s)
Amides/chemistry , Antiviral Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Hepacivirus/drug effects , Thiophenes/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology , Viral Nonstructural Proteins/metabolism
9.
Bioorg Med Chem Lett ; 19(19): 5652-6, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19709881

ABSTRACT

A series of benzo[d]isothiazole-1,1-dioxides were designed and evaluated as inhibitors of HCV polymerase NS5B. Structure-based design led to the incorporation of a high affinity methyl sulfonamide group. Structure-activity relationship (SAR) studies of this series revealed analogues with submicromolar potencies in the HCV replicon assay and moderate pharmacokinetic properties. SAR studies combined with structure based drug design focused on the sulfonamide region led to a novel and potent cyclic analogue.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Thiazoles/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Haplorhini , Rats , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics , Viral Nonstructural Proteins/metabolism
10.
Bioorg Med Chem Lett ; 19(19): 5648-51, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19700319

ABSTRACT

Benzothiazine-substituted tetramic acids were discovered as highly potent non-nucleoside inhibitors of HCV NS5B polymerase. X-ray crystallography studies confirmed the binding mode of these inhibitors with HCV NS5B polymerase. Rational optimization of time dependent inactivation of CYP 3A4 and clearance was accomplished by incorporation of electron-withdrawing groups to the benzothiazine core.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/drug effects , Pyrrolidinones/chemistry , Thiazines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Pyrrolidinones/chemical synthesis , Pyrrolidinones/pharmacokinetics , Rats , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism
11.
Bioorg Med Chem Lett ; 19(13): 3642-6, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19457662

ABSTRACT

A new series of benzothiazine-substituted quinolinediones were evaluated as inhibitors of HCV polymerase NS5B. SAR studies on this series revealed a methyl sulfonamide group as a high affinity feature. Analogues with this group showed submicromolar potencies in the HCV cell based replicon assay. Pharmacokinetic and toxicology studies were also performed on a selected compound (34) to evaluate in vivo properties of this new class of inhibitors of HCV NS5B polymerase.


Subject(s)
Antiviral Agents/chemistry , DNA-Directed RNA Polymerases/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Hepacivirus/drug effects , Quinolines/chemistry , Quinolones/chemistry , Thiazines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacokinetics , Computer Simulation , Crystallography, X-Ray , DNA-Directed RNA Polymerases/metabolism , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Quinolines/chemical synthesis , Quinolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacology , Rats , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/pharmacology , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
12.
J Pharm Sci ; 95(6): 1318-25, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16634069

ABSTRACT

The transport of 10 amino acid ester prodrugs of levovirin (LVV) was investigated in the human intestinal Caco-2 cell line in order to overcome the poor oral bioavailability of LVV, an investigational drug for the treatment of hepatitis C infection. The prodrugs were designed to improve the permeability of LVV across the intestinal epithelium by targeting the di/tri-peptide carrier, PepT1. Caco-2 cell monolayers were employed to study the transport and hydrolysis properties of the prodrugs. Among all mono amino acid ester prodrugs studied, the LVV-5'-(L)-valine prodrug (R1518) exhibited the maximum increase (48-fold) in permeability with nearly complete conversion to LVV within 1 h. Di-amino acid esters did not offer significant enhancement in permeability comparing with mono amino acid esters and exhibited slower conversion to LVV in Caco2 cell monolayers. Pharmacokinetic screening studies of the prodrugs in rats yielded the highest fold increase (6.9-fold) of AUC with R1518 and in general displayed a similar trend to that observed in increases of permeability in Caco-2 cells. Mechanisms involved in the Caco-2 cell transport of R1518 were also investigated. Results of bi-directional transport studies support the involvement of carrier-mediated transport mechanisms for R1518, but not for the LVV-5'-(D)-valine prodrug or LVV. Moreover, the permeability of R1518 was found to be proton dependent. PepT1-mediated transport of R1518 was supported by results of competitive transport studies of R1518 with the PepT1 substrates enalapril, Gly-Sar, valganciclovir, and cephalexin. R1518 was also found to inhibit the permeability of valganciclovir and cephalexin. These results suggest that R1518 is a PepT1 substrate as well as an inhibitor.


Subject(s)
Amino Acids/pharmacokinetics , Drug Delivery Systems , Intestinal Mucosa/metabolism , Prodrugs/metabolism , Protons , Symporters/administration & dosage , Animals , Area Under Curve , Biological Transport , Caco-2 Cells , Cell Membrane Permeability/drug effects , Esters , Humans , Hydrogen-Ion Concentration , Hydrolysis , Intestinal Absorption/drug effects , Molecular Structure , Monosaccharides/chemistry , Monosaccharides/pharmacology , Peptide Transporter 1 , Prodrugs/pharmacokinetics , Rats , Triazoles/chemistry , Triazoles/pharmacology
13.
J Med Chem ; 47(25): 6124-7, 2004 Dec 02.
Article in English | MEDLINE | ID: mdl-15566283

ABSTRACT

Two distinct synthetic schemes were applied to access heteroatom-containing alpha-chain lactams or lactams terminated as aryl acids. The latter lactams were devised using a pharmacophore for EP(4) receptor activity. gamma-Lactams were characterized for their prostanoid EP receptor affinities and EP(4) activity and found to be selective for the EP(2) and EP(4) receptors or selective for the EP(4) subtype. Benzoic acid 17 displayed enhanced in vivo exposure relative to 3.


Subject(s)
Benzoates/chemical synthesis , Lactams/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Prostaglandin E/agonists , Animals , Benzoates/pharmacokinetics , Benzoates/pharmacology , Blood Proteins/metabolism , Half-Life , Humans , Lactams/pharmacokinetics , Lactams/pharmacology , Models, Molecular , Molecular Conformation , Monte Carlo Method , Oxidation-Reduction , Protein Binding , Pyrrolidines/pharmacokinetics , Pyrrolidines/pharmacology , Rats , Receptors, Prostaglandin E/metabolism , Receptors, Prostaglandin E, EP2 Subtype , Receptors, Prostaglandin E, EP4 Subtype , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...