Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37420540

ABSTRACT

This study aimed to evaluate 2D magnetic flux leakage (MFL) signals (Bx, By) in D19-size reinforcing steel with several defect conditions. The magnetic flux leakage data were collected from the defected and new specimens using an economically designed test setup incorporating permanent magnets. A two-dimensional finite element model was numerically simulated using COMSOL Multiphysics to validate the experimental tests. Based on the MFL signals (Bx, By), this study also intended to improve the ability to analyze defect features such as width, depth, and area. Both the numerical and experimental results indicated a high cross-correlation with a median coefficient of 0.920 and a mean coefficient of 0.860. Using signal information to evaluate defect width, the x-component (Bx) bandwidth was found to increase with increasing defect width and the y-component (By) amplitude rise with increasing depth. In this two-dimensional MFL signal study, both parameters of the two-dimensional defects (width and depth) affected each other and could not be evaluated individually. The defect area was estimated from the overall variation in the signal amplitude of the magnetic flux leakage signals with the x-component (Bx). The defect areas showed a higher regression coefficient (R2 = 0.9079) for the x-component (Bx) amplitude from the 3-axis sensor signal. It was determined that defect features are positively correlated with sensor signals.


Subject(s)
Magnetics , Magnets , Magnetic Phenomena
2.
Materials (Basel) ; 15(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35454415

ABSTRACT

The objective of this study is to review, evaluate, and compare the existing research and practices on electrical resistivity as a nondestructive technique in evaluating chloride-induced deterioration of reinforced concrete elements in buildings and civil infrastructure systems. First, this paper summarizes the different measurement techniques for gathering electrical resistivity (ER) values on concrete. Second, comparison analyses are performed to review the correlation of ER to different parameters representing corrosive environment and activity of steel corrosion in concrete, such as degree of water saturation, chloride penetration and diffusivity, and corrosion rate. In addition, this research enumerates and individually discusses the different environmental and interference factors that are not related to the electrochemical process of steel corrosion in concrete but directly affect the ER measurements, including temperature, the presence of steel reinforcement, cracks and delamination defects, specimen geometry, and concrete composition. Lastly and most importantly, discussions are made to determine the current gap of knowledge, to improve the utilization of this method in field and laboratory measurements, and future research.

3.
Sensors (Basel) ; 21(18)2021 Sep 19.
Article in English | MEDLINE | ID: mdl-34577494

ABSTRACT

The primary purposes of this study are to investigate the feasibility of electrochemical deposition treatment (EDT) as a comprehensive rehabilitation method for corrosion-induced deterioration in reinforced concrete with various severity levels, and to propose a guideline for the determination of critical factors to advance EDT. This study includes three experimental phases, each of which simulates the initiation (de-passivation), propagation (high corrosion activity), and acceleration (formation of a surface-breaking crack) periods of corrosion-induced deterioration. After completion of a series of accelerated corrosion tests, damaged concrete samples with different severity levels are rehabilitated by a series of EDT processes using a MgCl2 solution in an electrolyte. The main variables for this experiment are the concentration levels (0, 0.3, 1.0 and 3.0 M) of a MgCl2 solution for test phase 1, charging time (0, 2, and 7 days) in EDT for test phase 2, and configuration of pre- and post-treatment processes in EDT for test phase 3. The rehabilitation performance of EDT is evaluated by analyzing the AC impedance properties of the steel-and-concrete interface using electrochemical impedance spectroscopy (EIS) for the test phases 1 and 2, and microscopic alternation in concrete cracks using optical microscopic image and SEM/EDX. It is demonstrated that EDT is an effective method for preventing and mitigating corrosion-induced deterioration in the initiation and rust propagation periods of corrosion and for repairing (closing and filling) a corrosion-induced surface-breaking crack in the acceleration phase of corrosion. Corrosion-resistant performance of concrete increases as the concentration levels of a MgCl2 solution in an electrolyte increases and as the charging time in EDT increases. In addition, a post-treatment process (applying a NaOH solution) after the electrochemical deposition process significantly improves crack-repairing performance of EDT.


Subject(s)
Dielectric Spectroscopy , Steel , Corrosion
4.
Sensors (Basel) ; 21(13)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34283169

ABSTRACT

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements.

5.
Sensors (Basel) ; 21(5)2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33807738

ABSTRACT

The widespread presence of heavy metals in drinking water sources arises as a major health concern, particularly in developing countries. The development of low-cost and reliable detection techniques is identified as a societal need to provide affordable water quality control. Herein, a bismuth film-coated gold ultramicroelectrode array (BF-UMEA) was used for the detection of Pb(II) and Cd(II) in water samples via square wave anodic stripping voltammetry (SWASV). Experimental parameters such as deposition time, Bi(III) concentration, acetate buffer concentration, pH, square wave frequency, amplitude, and step potential were all varied to determine their effects on the current peak intensities of the target metal ions. Ten-fold excess in the concentration of interferences was found to cause a decrease in the stripping peak areas of Cd(II) and Pb(II) in the following order of magnitude: benzene < NaCl < Ni(II) < Cu(II). Using Box-Behnken design, the optimum SWASV parameters that provided maximum current peak areas were 14.76 Hz (frequency), 50.10 mV (amplitude), and 8.76 mV (step potential). The limits of detection of the as-prepared BF-UMEA were 5 and 7 µg L-1 for Pb(II) and Cd(II), respectively. These results demonstrate the potential use of a BF-UMEA in SWASV for the trace quantification of Pb(II) and Cd(II) in water samples.

6.
Article in English | MEDLINE | ID: mdl-33799443

ABSTRACT

This case study covers the application of the fuzzy optimization in simultaneously satisfying various constraints that include the compliance of ammonia and nitrate concentrations with stringent environmental standards. Essential components in the multi-criteria decision-making analysis is in the utilization of the Box-Behnken design (BBD) response equations, cost equations and the cumulative uncertainty of response towards the sodium chloride dosage, current density and electrolysis time parameters. The energy consumption in the electrochemical oxidation of ammonia plays an essential role in influencing the total operating cost analysis. The determination of boundary limits based on the global optimum resulted in the complete ammonia removal and USD 64.0 operating cost as its maximum boundary limits and the 40.6% ammonia removal and USD 17.1 as its minimum boundary limits. Based on the fuzzy optimal results, the overall satisfaction level incurred a decrease in adhering with a lower ammonia standard concentration (10 mg/L at 80.3% vs. 1.9 mg/L at 76.1%) due to a higher energy consumption requirement. Global optimal fuzzy results showed to be highly cost efficient (232.5% lower) as compared to using BBD alone. This demonstrates the practicality of fuzzy optimization applications in the electrochemical reactions.


Subject(s)
Ammonia , Electrolysis , Electrodes , Nitrates , Oxidation-Reduction
7.
Article in English | MEDLINE | ID: mdl-33809592

ABSTRACT

The ubiquitous occurrence of heavy metals in the aquatic environment remains a serious environmental and health issue. The recovery of metals from wastes and their use for the abatement of toxic heavy metals from contaminated waters appear to be practical approaches. In this study, manganese was recovered from groundwater treatment sludge via reductive acid leaching and converted into spherical aggregates of high-purity MnO2. The as-synthesized MnO2 was used to adsorb Cu(II) and Pb(II) from single-component metal solutions. High metal uptake of 119.90 mg g-1 for Cu(II) and 177.89 mg g-1 for Pb(II) was attained at initial metal ion concentration, solution pH, and temperature of 200 mg L-1, 5.0, and 25 °C, respectively. The Langmuir isotherm model best described the equilibrium metal adsorption, indicating that a single layer of Cu(II) or Pb(II) was formed on the surface of the MnO2 adsorbent. The pseudo-second-order model adequately fit the Cu(II) and Pb(II) kinetic data confirming that chemisorption was the rate-limiting step. Thermodynamic studies revealed that Cu(II) or Pb(II) adsorption onto MnO2 was spontaneous, endothermic, and had increased randomness. Overall, the use of MnO2 prepared from groundwater treatment sludge is an effective, economical, and environmentally sustainable substitute to expensive reagents for toxic metal ion removal from water matrices.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Adsorption , Hydrogen-Ion Concentration , Kinetics , Lead , Manganese Compounds , Oxides , Sewage , Thermodynamics , Water Pollutants, Chemical/analysis
8.
Sensors (Basel) ; 20(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322443

ABSTRACT

The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.

9.
Materials (Basel) ; 14(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396340

ABSTRACT

The main objective of this research is to investigate the effect of water content in concrete on the velocities of ultrasonic waves (P- and S-waves) and mechanical properties (elastic modulus and compressive strength) of concrete. For this study, concrete specimens (100 mm × 200 mm cylinders) were fabricated with three different water-to-binder ratios (0.52, 0.35, and 0.26). These cylinders were then submerged in water to be saturated in different degrees from 25% to 100% with an interval of 25% saturation. Another set of cylinders was also oven-dried to represent the dry condition. The dynamic properties of concrete were then assessed using a measurement of elastic wave accordance with ASTM C597-16 and using resonance tests following ASTM C215-19, before and after immersion in water. The static properties of saturated concrete were also assessed by the uniaxial compressive testing according to ASTM C39/C39M-20 and ASTM C469/C469M-14. It was observed that the saturation level of concrete affected the two ultrasonic wave velocities and the two static mechanical properties of concrete in various ways. The relationship between P-wave velocity and compressive strength of concrete was highly sensitive to saturation condition of concrete. In contrast, S-wave velocity of concrete was closely correlated with compressive strength of concrete, which was much less sensitive to water saturation level compared to P-wave velocity of concrete. Finally, it was noticed that water saturation condition only little affects the relationship between the dynamic and elastic moduli of elasticity of concrete studies in this study.

10.
Molecules ; 24(13)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277493

ABSTRACT

In the present research, treatment of contaminated groundwater via adsorption of As(V) with an initial concentration of 50.99 µg/L using chitosan-coated bentonite (CCB) was investigated. The effect of adsorbent mass (0.001 to 2.0 g), temperature (298 to 328 K), and contact time (1 to 180 min) on the removal efficiency was examined. Adsorption data was evaluated using isotherm models such as Langmuir, Freundlich, and Dubinin-Radushkevich. Isotherm study showed that the Langmuir (R2 > 0.9899; χ2 ≤ 0.91; RMSE ≤ 4.87) model best correlates with the experimental data. Kinetics studies revealed that pseudo-second order equation adequately describes the experimental data (R2 ≥ 0.9951; χ2 ≤ 0.8.33; RMSE ≤ 4.31) where equilibrium was attained after 60 min. Thermodynamics study shows that the As(V) adsorption is non-spontaneous (ΔG0 ≥ 0) and endothermic (ΔH0 = 8.31 J/mol) that would result in an increase in randomness (ΔS0 = 29.10 kJ/mol•K) within the CCB-solution interface. FT-IR analysis reveals that hydroxyl and amino groups are involved in the adsorption of As(V) from groundwater. Results of the present research serve as a tool to determine whether CCB is an environmentally safe and cost effective material that could be utilized in a permeable reactive barrier system for the remediation of As(V) from contaminated groundwater.


Subject(s)
Arsenates/isolation & purification , Bentonite/chemistry , Chitosan/chemistry , Groundwater/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Diffusion , Kinetics , Temperature , Time Factors
11.
Water Sci Technol ; 79(6): 1029-1041, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31070583

ABSTRACT

In the present work, the performance of spent coffee grounds (SCG) as an adsorbent in the treatment of real soil washing wastewater (SWW) was evaluated. Scanning electron microscopy, Fourier transform infrared spectroscopy, zeta potential measurement and Brunauer-Emmett-Teller analysis were utilized to determine the physicochemical characteristics of SCG. Maximum removal efficiency of 68.73% for Cu(II), 57.23% for Pb(II) and 84.55% for Zn(II) was attained at 2.5 g SCG, 300 min and 328 K. Error analysis was performed using root mean square error (RMSE) and sum of square error (SSE). Equilibrium data correlated well with the Langmuir isotherm for Pb(II) adsorption and Freundlich model for the removal of Cu(II) and Zn(II). The kinetic study shows that adsorption of the heavy metals using SCG can be satisfactorily described using the pseudo-second order equation (R2 ≥ 0.9901; RMSE ≤ 15.0539; SSE ≤ 145.1461). Activation parameters including activation energy, change in free energy of activation, activation entropy change (ΔS*) and activation enthalpy change (ΔH*) were determined using Arrhenius and Eyring equations. Thermodynamic studies show that adsorption of the heavy metals using SCG is spontaneous, endothermic (ΔH° ≥ 9.80 kJ/mol·K) and results in increased randomness at the solid/solution interface (ΔS° ≥ 2.28 J/mol).


Subject(s)
Metals, Heavy/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Adsorption , Coffee/chemistry , Copper/analysis , Copper/chemistry , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Kinetics , Lead/chemistry , Metals, Heavy/analysis , Soil/chemistry , Thermodynamics , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Zinc/chemistry
12.
Polymers (Basel) ; 11(4)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018629

ABSTRACT

In this paper, the synthesis of a chitosan-montmorillonite nanocomposite material grafted with acrylic acid is presented based on its function in a case study analysis. Fuzzy optimization is used for a multi-criteria decision analysis to determine the best desirable swelling capacity (YQ) of the material synthesis at its lowest possible variable cost. For YQ, the integrating the result's cumulative uncertainty is an essential element to investigate the feasibility of the developed model equation. The Pareto set analysis is able to set the appropriate boundary limits for YQ and the variable cost. Two case studies are presented in determining the lowest possible cost: Case 1 for maximum YQ, and Case 2 for minimum YQ. These boundary limits were used in the fuzzy optimization to determine its global optimum results that achieved the overall satisfaction ratings of 67.2% (Case 1) and 52.3% (Case 2). The synthesis of the polyacrylic acid/chitosan material for Case 1 resulted in 305 g/g YQ and 10.8 USD/kg, while Case 2 resulted in 97 g/g YQ and 12.3 USD/kg. Thus, the fuzzy optimization approach proves to be a practical method for examining the best possible compromise solution based on the desired function to adequately synthesize a material.

13.
Environ Sci Pollut Res Int ; 26(17): 17292-17304, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31016587

ABSTRACT

In the present work, graphene oxide (GO) was synthesized via the modified Hummers method and utilized in treating real soil washing wastewater via adsorptive removal of lead (Pb) and zinc (Zn). Characterization analysis of GO was performed using X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The Van't Hoff, Eyring, and Arrhenius equations were applied to determine the activation and thermodynamic parameters namely activation energy (Ea), standard Gibbs energy change (ΔG°), standard enthalpy change (ΔH°), standard entropy change (ΔS°), change in activation Gibbs energy (ΔG#), change in activation enthalpy (ΔH#), and change in activation entropy (ΔS#). Based on the high coefficient of determination values (0.8882 ≥ R2 ≥ 0.9094) and low values of SSE (0.0292 ≤ SSE ≤ 0.0511) and ARE (0.8014 ≤ ARE ≤ 0.8822), equilibrium data agreed well with the Freundlich isotherm. The maximum adsorption capacity for Pb(II) and Zn(II) was determined to be 11.57 and 4.65 mg/g, respectively. Kinetic studies revealed that pseudo-second-order equation fitted well with the experimental data, which indicates that chemisorption is the rate-determining step of the adsorption system. Results have shown the possibility of GO as a potential adsorbent material in the treatment of soil washing wastewater.


Subject(s)
Graphite/chemistry , Lead/analysis , Soil/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Zinc/analysis , Adsorption , Kinetics , Thermodynamics
14.
Sensors (Basel) ; 20(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31905855

ABSTRACT

The primary objective of the present work is to measure the corrosion rate of reinforcing steel embedded in concrete structures in a simulated marine environment of high chloride concentration. The selection of a single frequency that corresponds to the solution resistance and single frequency that corresponds to the charge transfer resistance were performed and measurements were carried out in a relatively faster time. A total of seven cement mortar specimens were prepared. The effect of varying cover thickness (5-50 mm) and rebar distance (10-80 mm) on the electrical resistance of the concrete and corrosion rate of the steel was examined. To simulate the corrosion of reinforced concrete in a marine environment, cement mortars were exposed to 25 wet-dry cycles that involve an immersion for 8 h in 3 wt.% NaCl solution and drying time of 16 h under room temperature. Alternative current (AC) impedance measurements were carried out within a frequency range from 100 kHz to 1 mHz. Results show that the formation of rust layers on rebars has caused a significant decrease in the maximum phase shift to θ = -30°. An accelerated corrosion rate of the rebars was observed during drying stage.

15.
Sensors (Basel) ; 18(9)2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30177653

ABSTRACT

Bathymetric mapping is traditionally implemented using shipborne single-beam, multi-beam, and side-scan sonar sensors. Procuring bathymetric data near coastlines using shipborne sensors is difficult, however, this type of data is important for maritime safety, marine territory management, climate change monitoring, and disaster preparedness. In recent years, the bathymetric light detection and ranging (LiDAR) technique has been tried to get seamless geospatial data from land to submarine topography. This paper evaluated the accuracy of bathymetry generated near coastlines from satellite altimetry-derived gravity anomalies and multi-beam bathymetry using a tuning density contrast of 5000 kg/m³ determined by the gravity-geologic method. Comparing with the predicted bathymetry of using only multi-beam depth data, 78% root mean square error from both multi-beam and airborne bathymetric LiDAR was improved in shallow waters of nearshore coastlines of the western Korea. As a result, the satellite-derived bathymetry estimated from the multi-beam and the airborne bathymetric LiDAR was enhanced to the accuracy of about 0.2 m.

SELECTION OF CITATIONS
SEARCH DETAIL
...