Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1401794, 2024.
Article in English | MEDLINE | ID: mdl-38846575

ABSTRACT

The rhizosphere microbiome plays a crucial role in supporting plant productivity and ecosystem functioning by regulating nutrient cycling, soil integrity, and carbon storage. However, deciphering the intricate interplay between microbial relationships within the rhizosphere is challenging due to the overwhelming taxonomic and functional diversity. Here we present our systematic design framework built on microbial colocalization and microbial interaction, toward successful assembly of multiple rhizosphere-derived Reduced Complexity Consortia (RCC). We enriched co-localized microbes from Brachypodium roots grown in field soil with carbon substrates mimicking Brachypodium root exudates, generating 768 enrichments. By transferring the enrichments every 3 or 7 days for 10 generations, we developed both fast and slow-growing reduced complexity microbial communities. Most carbon substrates led to highly stable RCC just after a few transfers. 16S rRNA gene amplicon analysis revealed distinct community compositions based on inoculum and carbon source, with complex carbon enriching slow growing yet functionally important soil taxa like Acidobacteria and Verrucomicrobia. Network analysis showed that microbial consortia, whether differentiated by growth rate (fast vs. slow) or by succession (across generations), had significantly different network centralities. Besides, the keystone taxa identified within these networks belong to genera with plant growth-promoting traits, underscoring their critical function in shaping rhizospheric microbiome networks. Furthermore, tested consortia demonstrated high stability and reproducibility, assuring successful revival from glycerol stocks for long-term viability and use. Our study represents a significant step toward developing a framework for assembling rhizosphere consortia based on microbial colocalization and interaction, with future implications for sustainable agriculture and environmental management.

2.
Microb Biotechnol ; 17(1): e14373, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070192

ABSTRACT

Improving methane production through electrical current application to anaerobic digesters has garnered interest in optimizing such microbial electrochemical technologies, with claims suggesting direct interspecies electron transfer (DIET) at the cathode enhances methane yield. However, previous studies with mixed microbial communities only reported interspecies interactions based on species co-occurrence at the cathode, lacking insight into how a poised cathode influences well-defined DIET-based partnerships. To address this, we investigated the impact of continuous and discontinuous exposure to a poised cathode (-0.7 V vs. standard hydrogen electrode) on a defined consortium of Geobacter metallireducens and Methanosarcina barkeri, known for their DIET capabilities. The physiology of DIET consortia exposed to electrical current was compared to that of unexposed consortia. In current-exposed incubations, overall metabolic activity and cell numbers for both partners declined. The consortium, receiving electrons from the poised cathode, accumulated acetate and hydrogen, with only 32% of the recovered electrons allocated to methane production. Discontinuous exposure intensified these detrimental effects. Conversely, unexposed control reactors efficiently converted ethanol to methane, transiently accumulating acetate and recovering 88% of electrons in methane. Our results demonstrate the overall detrimental effect of electrochemical stimulation on a DIET consortium. Besides, the data indicate that the presence of an alternative electron donor (cathode) hinders efficient electron retrieval by the methanogen from Geobacter, and induces catabolic repression of oxidative metabolism in Geobacter. This study emphasizes understanding specific DIET-based interactions to enhance methane production during electrical stimulation, providing insights for optimizing tailored interspecies partnerships in microbial electrochemical technologies.


Subject(s)
Electrons , Hydrogen , Electron Transport , Hydrogen/metabolism , Methane/metabolism , Acetates , Anaerobiosis
3.
ISME Commun ; 3(1): 54, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280433

ABSTRACT

For a deeper and comprehensive understanding of the composition and function of rhizosphere microbiomes, we need to focus at the scale of individual roots in standardized growth containers. Root exudation patterns are known to vary along distinct parts of the root even in juvenile plants giving rise to spatially distinct microbial niches. To address this, we analyzed the microbial community from two spatially distinct zones of the developing primary root (tip and base) in young Brachypodium distachyon grown in natural soil using standardized fabricated ecosystems known as EcoFABs as well as in more conventional pot and tubes. 16S rRNA based community analysis showed a strong rhizosphere effect resulting in significant enrichment of several OTUs belonging to Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. However, microbial community composition did not differ between root tips and root base or across different growth containers. Functional analysis of bulk metagenomics revealed significant differences between root tips and bulk soil. The genes associated with different metabolic pathways and root colonization were enriched in root tips. On the other hand, genes associated with nutrient-limitation and environmental stress were prominent in the bulk soil compared to root tips, implying the absence of easily available, labile carbon and nutrients in bulk soil relative to roots. Such insights into the relationships between developing root and microbial communities are critical for judicious understanding of plant-microbe interactions in early developmental stages of plants.

4.
Front Microbiol ; 12: 625752, 2021.
Article in English | MEDLINE | ID: mdl-33841353

ABSTRACT

The rhizosphere is a dynamic ecosystem shaped by complex interactions between plant roots, soil, microbial communities and other micro- and macro-fauna. Although studied for decades, critical gaps exist in the study of plant roots, the rhizosphere microbiome and the soil system surrounding roots, partly due to the challenges associated with measuring and parsing these spatiotemporal interactions in complex heterogeneous systems such as soil. To overcome the challenges associated with in situ study of rhizosphere interactions, specialized plant growth chamber systems have been developed that mimic the natural growth environment. This review discusses the currently available lab-based systems ranging from widely known rhizotrons to other emerging devices designed to allow continuous monitoring and non-destructive sampling of the rhizosphere ecosystems in real-time throughout the developmental stages of a plant. We categorize them based on the major rhizosphere processes it addresses and identify their unique challenges as well as advantages. We find that while some design elements are shared among different systems (e.g., size exclusion membranes), most of the systems are bespoke and speaks to the intricacies and specialization involved in unraveling the details of rhizosphere processes. We also discuss what we describe as the next generation of growth chamber employing the latest technology as well as the current barriers they face. We conclude with a perspective on the current knowledge gaps in the rhizosphere which can be filled by innovative chamber designs.

5.
Curr Opin Biotechnol ; 67: 119-129, 2021 02.
Article in English | MEDLINE | ID: mdl-33540362

ABSTRACT

Favorable interspecies associations prevail in natural microbial assemblages. Some of these favorable associations are co-metabolic dependent partnerships in which extracellular electrons are exchanged between species. For such electron exchange to occur, the cells must exhibit electroactive interfaces and get involved in direct cell-to-cell contact (Direct Interspecies Electron Transfer/DIET) or use available conductive mineral grains from their environment (Conductive-particle-mediated Interspecies Electron Transfer/CIET). This review will highlight recent discoveries and knowledge gaps regarding DIET and CIET interspecies associations in artificial co-cultures and consortia from natural and man-made environments and emphasize approaches to validate DIET and CIET. Additionally, we acknowledge the initiation of a movement towards applying electric syntrophies in biotechnology, bioremediation and geoengineering for natural attenuation of toxic compounds. Next, we have highlighted the urgent research needs that must be met to develop such technologies.


Subject(s)
Biotechnology , Electricity , Biodegradation, Environmental , Electron Transport , Electrons
6.
Sci Rep ; 10(1): 372, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941946

ABSTRACT

The co-occurrence of Geobacter and Methanosarcinales is often used as a proxy for the manifestation of direct interspecies electron transfer (DIET) in the environment. Here we tested eleven new co-culture combinations between methanogens and electrogens. Previously, only the most electrogenic Geobacter paired by DIET with Methanosarcinales methanogens, namely G. metallireducens and G. hydrogenophilus. Here we provide additional support, and show that five additional Methanosarcinales paired with G. metallireducens, while a strict hydrogenotroph could not. We also show that G. hydrogenophilus, which is incapable to grow with a strict hydrogenotrophic methanogen, could pair with a strict non-hydrogenotrophic Methanosarcinales. Likewise, an electrogen outside the Geobacter cluster (Rhodoferrax ferrireducens) paired with Methanosarcinales but not with strict hydrogenotrophic methanogens. The ability to interact with electrogens appears to be conserved among Methanosarcinales, the only methanogens with c-type cytochromes, including multihemes (MHC). Nonetheless, MHC, which are often linked to extracellular electron transfer, were neither unique nor universal to Methanosarcinales and only two of seven Methanosarcinales tested had MHC. Of these two, one strain had an MHC-deletion knockout available, which we hereby show is still capable to retrieve extracellular electrons from G. metallireducens or an electrode suggesting an MHC-independent strategy for extracellular electron uptake.


Subject(s)
Cytochrome c Group/metabolism , Methanosarcinales/metabolism , Coculture Techniques , Electron Transport , Electrons , Geobacter/metabolism
7.
Nanotechnology ; 31(17): 174003, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-31931483

ABSTRACT

Electromicrobiology is an emerging field investigating and exploiting the interaction of microorganisms with insoluble electron donors or acceptors. Some of the most recently categorized electroactive microorganisms became of interest to sustainable bioengineering practices. However, laboratories worldwide typically maintain electroactive microorganisms on soluble substrates, which often leads to a decrease or loss of the ability to effectively exchange electrons with solid electrode surfaces. In order to develop future sustainable technologies, we cannot rely solely on existing lab-isolates. Therefore, we must develop isolation strategies for environmental strains with electroactive properties superior to strains in culture collections. In this article, we provide an overview of the studies that isolated or enriched electroactive microorganisms from the environment using an anode as the sole electron acceptor (electricity-generating microorganisms) or a cathode as the sole electron donor (electricity-consuming microorganisms). Next, we recommend a selective strategy for the isolation of electroactive microorganisms. Furthermore, we provide a practical guide for setting up electrochemical reactors and highlight crucial electrochemical techniques to determine electroactivity and the mode of electron transfer in novel organisms.


Subject(s)
Bacteria/isolation & purification , Bioelectric Energy Sources/microbiology , Anaerobiosis , Bacteriological Techniques , Electrochemical Techniques , Electrodes
8.
Front Microbiol ; 11: 610001, 2020.
Article in English | MEDLINE | ID: mdl-33391234

ABSTRACT

Recovery and cultivation of diverse environmentally-relevant microorganisms from the terrestrial subsurface remain a challenge despite recent advances in modern molecular technology. Here, we applied complex carbon (C) sources, i.e., sediment dissolved organic matter (DOM) and bacterial cell lysate, to enrich groundwater microbial communities for 30 days. As comparisons, we also included enrichments amended with simple C sources including glucose, acetate, benzoate, oleic acid, cellulose, and mixed vitamins. Our results demonstrate that complex C is far more effective in enriching diverse and distinct microorganisms from groundwater than simple C. Simple C enrichments yield significantly lower biodiversity, and are dominated by few phyla (e.g., Proteobacteria and Bacteroidetes), while microcosms enriched with complex C demonstrate significantly higher biodiversity including phyla that are poorly represented in published culture collections (e.g., Verrucomicrobia, Planctomycetes, and Armatimonadetes). Subsequent isolation from complex C enrichments yielded 228 bacterial isolates representing five phyla, 17 orders, and 56 distinct species, including candidate novel, rarely cultivated, and undescribed organisms. Results from this study will substantially advance cultivation and isolation strategies for recovering diverse and novel subsurface microorganisms. Obtaining axenic representatives of "once-unculturable" microorganisms will enhance our understanding of microbial physiology and function in different biogeochemical niches of terrestrial subsurface ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...