Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38981010

ABSTRACT

Continuous monitoring of physiological signals from the human body is critical in health monitoring, disease diagnosis, and therapeutics. Despite the needs, the existing wearable medical devices rely on either bulky wired systems or battery-powered devices needing frequent recharging. Here, we introduce a wearable, self-powered, thermoelectric flexible system architecture for wireless portable monitoring of physiological signals without recharging batteries. This system harvests an exceptionally high open circuit voltage of 175-180 mV from the human body, powering the wireless wearable bioelectronics to detect electrophysiological signals on the skin continuously. The thermoelectric system shows long-term stability in performance for 7 days with stable power management. Integrating screen printing, laser micromachining, and soft packaging technologies enables a multilayered, soft, wearable device to be mounted on any body part. The demonstration of the self-sustainable wearable system for detecting electromyograms and electrocardiograms captures the potential of the platform technology to offer various opportunities for continuous monitoring of biosignals, remote health monitoring, and automated disease diagnosis.

2.
ACS Appl Mater Interfaces ; 15(29): 35227-35238, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37449957

ABSTRACT

This study investigates the solid-state charge transport properties of the oxidized forms of dioxythiophene-based alternating copolymers consisting of an oligoether-functionalized 3,4-propylenedioxythiophene (ProDOT) copolymerized with different aryl groups, dimethyl ProDOT (DMP), 3,4-ethylenedioxythiophene (EDOT), and 3,4-phenylenedioxythiophene (PheDOT), respectively, to yield copolymers P(OE3)-D, P(OE3)-E, and P(OE3)-Ph. At a dopant concentration of 5 mM FeTos3, the electrical conductivities of these copolymers vary significantly (ranging between 9 and 195 S cm-1) with the EDOT copolymer, P(OE3)-E, achieving the highest electrical conductivity. UV-vis-NIR and X-ray spectroscopies show differences in both susceptibility to oxidative doping and extent of oxidation for the P(OE3) series, with P(OE3)-E being the most doped. Wide-angle X-ray scattering measurements indicate that P(OE3)-E generally demonstrates the lowest paracrystallinity values in the series, as well as relatively small π-π stacking distances. The significant (i.e., order of magnitude) increase in electrical conductivity of doped P(OE3)-E films versus doped P(OE3)-D or P(OE3)-Ph films can therefore be attributed to P(OE3)-E exhibiting both the highest carrier ratios in the P(OE3) series, along with good π-π overlap and local ordering (low paracrystallinity values). Furthermore, these trends in the extent of doping and paracrystallinity are consistent with the reduced Fermi energy level and transport function prefactor parameters calculated using the semilocalized transport (SLoT) model. Observed differences in carrier ratios at the transport edge (ct) and reduced Fermi energies [η(c)] suggest a broader electronic band (better overlap and more delocalization) for the EDOT-incorporating P(OE3)-E polymer relative to P(OE3)-D and P(OE3)-Ph. Ultimately, we rationalize improvements in electrical conductivity due to microstructural and doping enhancements caused by EDOT incorporation, a structure-property relationship worth considering in the future design of highly electrically conductive systems.

3.
J Phys Chem C Nanomater Interfaces ; 127(25): 12206-12217, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37415971

ABSTRACT

Chemically doped poly[2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) shows promise for many organic electronic applications, but rationalizing its charge transport properties is challenging because conjugated polymers are inhomogeneous, with convoluted optical and solid-state transport properties. Herein, we use the semilocalized transport (SLoT) model to quantify how the charge transport properties of PBTTT change as a function of iron(III) chloride (FeCl3) doping level. We use the SLoT model to calculate fundamental transport parameters, including the carrier density needed for metal-like electrical conductivities and the position of the Fermi energy level with respect to the transport edge. We then contextualize these parameters with other polymer-dopant systems and previous PBTTT reports. Additionally, we use grazing incidence wide-angle X-ray scattering and spectroscopic ellipsometry techniques to better characterize inhomogeneity in PBTTT. Our analyses indicate that PBTTT obtains high electrical conductivities due to its quickly rising reduced Fermi energy level, and this rise is afforded by its locally high carrier densities in highly ordered microdomains. Ultimately, this report sets a benchmark for comparing transport properties across polymer-dopant-processing systems.

4.
Nanoscale ; 15(13): 6187-6200, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36916453

ABSTRACT

Poly(3,4-ethylene dioxythiophene) (PEDOT) has a high theoretical charge storage capacity, making it of interest for electrochemical applications including energy storage and water desalination. Nanoscale thin films of PEDOT are particularly attractive for these applications to enable faster charging. Recent work has demonstrated that nanoscale thin films of PEDOT can be formed using sequential gas-phase exposures via oxidative molecular layer deposition, or oMLD, which provides advantages in conformality and uniformity on high aspect ratio substrates over other deposition techniques. But to date, the electrochemical properties of these oMLD PEDOT thin films have not been well-characterized. In this work, we examine the electrochemical properties of 5-100 nm thick PEDOT films formed using 20-175 oMLD deposition cycles. We find that film thickness of oMLD PEDOT films affects the orientation of ordered domains leading to a substantial change in charge storage capacity. Interestingly, we observe a minimum in charge storage capacity for an oMLD PEDOT film thickness of ∼30 nm (60 oMLD cycles at 150 °C), coinciding with the highest degree of face-on oriented PEDOT domains as measured using grazing incidence wide angle X-ray scattering (GIWAXS). Thinner and thicker oMLD PEDOT films exhibit higher fractions of oblique (off-angle) orientations and corresponding increases in charge capacity of up to 120 mA h g-1. Electrochemical measurements suggest that higher charge capacity in films with mixed domain orientation arise from the facile transport of ions from the liquid electrolyte into the PEDOT layer. Greater exposure of the electrolyte to PEDOT domain edges is posited to facilitate faster ion transport in these mixed domain films. These insights will inform future design of PEDOT coated high-aspect ratio structures for electrochemical energy storage and water treatment.

5.
Angew Chem Int Ed Engl ; 62(1): e202211600, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36269867

ABSTRACT

Herein, a route to produce highly electrically conductive doped hydroxymethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) films, termed PEDOT(OH) with metal-like charge transport properties using a fully solution processable precursor polymer is reported. This is achieved via an ester-functionalized PEDOT derivative [PEDOT(EHE)] that is soluble in a range of solvents with excellent film-forming ability. PEDOT(EHE) demonstrates moderate electrical conductivities of 20-60 S cm-1 and hopping-like (i.e., thermally activated) transport when doped with ferric tosylate (FeTos3 ). Upon basic hydrolysis of PEDOT(EHE) films, the electrically insulative side chains are cleaved and washed from the polymer film, leaving a densified film of PEDOT(OH). These films, when optimally doped, reach electrical conductivities of ≈1200 S cm-1 and demonstrate metal-like (i.e., thermally deactivated and band-like) transport properties and high stability at comparable doping levels.

6.
Public Health Rep ; 137(2_suppl): 76S-82S, 2022.
Article in English | MEDLINE | ID: mdl-35861290

ABSTRACT

Health authorities encouraged the use of digital contact tracing mobile applications (apps) during the COVID-19 pandemic, but the level of adoption was low because apps offered few direct benefits to counterbalance risks to personal privacy. Adoption of such apps could improve if they provided benefits to users. NOVID (COVID-19 Radar), a smartphone app, provided users with personalized data on social proximity of COVID-19 cases and exposed contacts. We analyzed uptake of NOVID at the Georgia Institute of Technology (Georgia Tech) during the 2020-2021 academic year. Data included anonymous NOVID users who self-identified with Georgia Tech and their first- and second-degree network contacts. NOVID achieved 13%-30% adoption at Georgia Tech. Because of technical challenges, adoption waned after an initial peak. The largest increases in adoption (from 41 to 3704) followed administrative promotion of NOVID. Adoption increased modestly (from 2512 to 2661) after faculty- and student-led promotion, such as distribution of door hangers and a public seminar. Two-thirds of on-campus NOVID users were connected to a large network of other users, enabling them to receive data on social proximity of COVID-19 cases and exposed contacts. Network cohesion was observed to emerge rapidly when adoption rates passed just 10%, consistent with estimates from network theory. The key lesson learned in this case study is that top-down administrative promotion outperforms bottom-up grassroots promotion. Relatively high levels of adoption and network cohesion, despite technical challenges during the Georgia Tech pilot of NOVID, illustrate the promise of digital contact tracing when apps provide privacy and inherently beneficial personalized data to their users, especially in regions where Google Apple Exposure Notification is not available.


Subject(s)
COVID-19 , Mobile Applications , Humans , COVID-19/epidemiology , Pandemics , Universities , Contact Tracing
7.
ACS Appl Mater Interfaces ; 14(25): 29039-29051, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35711091

ABSTRACT

This study investigates the charge-transport properties of poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly(ProDOT-alt-biEDOT) (PE2) films doped with a set of iron(III)-based dopants and as a function of dopant concentration. X-ray photoelectron spectroscopy measurements show that doping P3HT with 12 mM iron(III) solutions leads to similar extents of oxidation, independent of the dopant anion; however, the electrical conductivities and Seebeck coefficients vary significantly (5 S cm-1 and + 82 µV K-1 with tosylate and 56 S cm-1 and +31 µV K-1 with perchlorate). In contrast, PE2 thermoelectric transport properties vary less with respect to the iron(III) anion chemistry, which is attributed to PE2 having a lower onset of oxidation than P3HT. Consequentially, PE2 doped with 12 mM iron(III) perchlorate obtained an electrical conductivity of 315 S cm-1 and a Seebeck coefficient of + 7 µV K-1. Modeling these thermoelectric properties with the semilocalized transport (SLoT) model suggests that tosylate-doped P3HT remains mostly in the localized transport regime, attributed to more disorder in the microstructure. In contrast perchlorate-doped P3HT and PE2 films exhibited thermally deactivated electrical conductivities and metal-like transport at high doping levels over limited temperature ranges. Finally, the SLoT model suggests that PE2 has the potential to be more electrically conductive than P3HT due to PE2's ability to achieve higher extents of oxidation and larger shifts in the reduced Fermi energy levels.

8.
Plast Reconstr Surg ; 150(1): 92e-104e, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35536768

ABSTRACT

BACKGROUND: Burns are severe injuries often associated with impaired wound healing. Impaired healing is caused by multiple factors, including dysregulated inflammatory responses at the wound site. Interestingly, montelukast, an antagonist for cysteinyl leukotrienes and U.S. Food and Drug Administration approved for treatment of asthma and allergy, was previously shown to enhance healing in excision wounds and to modulate local inflammation. METHODS: In this study, the authors examined the effect of montelukast on wound healing in a mouse model of scald burn injury. Burn wound tissues isolated from montelukast- and vehicle-treated mice at various times after burn injury were analyzed for wound areas ( n = 34 to 36), reepithelialization ( n = 14), inflammation ( n = 8 to 9), and immune cell infiltration ( n = 3 to 6) and proliferation ( n = 7 to 8). RESULTS: In contrast to previously described beneficial effects in excision wounds, this study shows that montelukast delays burn wound healing by impairing the proliferation of keratinocytes and endothelial cells. This occurs largely independently of inflammatory responses at the wound site, suggesting that montelukast impairs specifically the proliferative phase of wound healing in burns. Wound healing rates in mice in which leukotrienes are not produced were not affected by montelukast. CONCLUSION: Montelukast delays wound healing mainly by reducing the proliferation of local cells after burn injury. CLINICAL RELEVANCE STATEMENT: Although additional and clinical studies are necessary, our study suggests that burn patients who are on montelukast may exhibit delayed healing, necessitating extra observation.


Subject(s)
Burns , Endothelial Cells , Acetates , Animals , Burns/complications , Burns/drug therapy , Cyclopropanes , Inflammation , Leukotrienes/pharmacology , Leukotrienes/therapeutic use , Mice , Quinolines , Sulfides , Wound Healing/physiology
9.
J Am Chem Soc ; 144(3): 1351-1360, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35007084

ABSTRACT

The processability and electronic properties of conjugated polymers (CPs) have become increasingly important due to the potential of these materials in redox and solid-state devices for a broad range of applications. To solubilize CPs, side chains are needed, but such side chains reduce the relative fraction of electroactive material in the film, potentially obstructing π-π intermolecular interactions, localizing charge carriers, and compromising desirable optoelectronic properties. To reduce the deleterious effects of side chains, we demonstrate that post-processing side chain removal, exemplified here via ester hydrolysis, significantly increases the electrical conductivity of chemically doped CP films. Beginning with a model system consisting of an ester functionalized ProDOT copolymerized with a dimethylProDOT, we used a variety of methods to assess the changes in polymer film volume and morphology upon hydrolysis and resulting active material densification. Via a combination of electrochemistry, X-ray photoelectron spectroscopy, and charge transport models, we demonstrate that this increase in electrical conductivity is not due to an increase in degree of doping but an increase in charge carrier density and reduction in carrier localization that occurs due to side chain removal. With this improved understanding of side chain hydrolysis, we then apply this method to high-performance ProDOT-alt-EDOTx copolymers. After hydrolysis, these ProDOT-alt-EDOTx copolymers yield exceptional electrical conductivities (∼700 S/cm), outperforming all previously reported oligoether-/glycol-based CP systems. Ultimately, this methodology advances the ability to solution process highly electrically conductive CP films.

10.
ACS Appl Mater Interfaces ; 14(1): 1740-1746, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34931792

ABSTRACT

We study the thermal conductivity of diameter-modulated Si nanowires to understand the impact of different nanoscale transport mechanisms as a function of nanowire morphology. Our investigation couples transient suspended microbridge measurements of diameter-modulated Si nanowires synthesized via vapor-liquid-solid growth and dopant-selective etching with predictive Boltzmann transport modeling. We show that the presence of a low thermal conductivity phase (i.e., porosity) dominates the reduction in effective thermal conductivity and is supplemented by increased phonon-boundary scattering. The relative contributions of both mechanisms depend on the details of the nanoscale morphology. Our findings provide valuable insights into the factors that govern thermal conduction in complex nanoscale materials.

11.
Nat Mater ; 20(10): 1414-1421, 2021 10.
Article in English | MEDLINE | ID: mdl-34017120

ABSTRACT

Charge transport in semiconducting polymers ranges from localized (hopping-like) to delocalized (metal-like), yet no quantitative model exists to fully capture this transport spectrum and its dependency on charge carrier density. In this study, using an archetypal polymer-dopant system, we measure the temperature-dependent electrical conductivity, Seebeck coefficient and extent of oxidation. We then use these measurements to develop a semi-localized transport (SLoT) model, which captures both localized and delocalized transport contributions. By applying the SLoT model to published data, we demonstrate its broad utility. We are able to determine system-dependent parameters such as the maximum localization energy of the system, how this localization energy changes with doping, the amount of dopant required to achieve metal-like conductivity and the conductivity a system could have in the absence of localization effects. This proposed SLoT model improves our ability to predict and tailor electronic properties of doped semiconducting polymers.

12.
Langmuir ; 36(7): 1633-1641, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32052971

ABSTRACT

Wood is a universal building material. While highly versatile, many of its critical properties vary with water content (e.g., dimensionality, mechanical strength, and thermal insulation). Treatments to control the water content in wood have many technological applications. This study investigates the use of single-cycle atomic layer deposition (1cy-ALD) to apply <1 nm Al2O3, ZnO, or TiO2 coatings to various bulk lumber species (pine, cedar, and poplar) to alter their wettability, fungicidal, and thermal transport properties. Because the 1cy-ALD process only requires a single exposure to the precursors, it is potentially scalable for commodity product manufacturing. While all ALD chemistries are found to make the wood's surface hydrophobic, wood treated with TiO2 (TiCl4 + H2O) shows the greatest bulk water repellency upon full immersion in water. In situ monitoring of the chamber reaction pressure suggests that the TiCl4 + H2O chemistry follows reaction-rate-limited processing kinetics that enables deeper diffusion of the precursors into the wood's fibrous structure. Consequently, in humid or moist environments, 1cy-ALD (TiCl4 + H2O) treated lumber shows a 4 times smaller increase in thermal conductivity and improved resistance to mold growth compared to untreated lumber.

13.
Rev Sci Instrum ; 89(11): 114905, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501307

ABSTRACT

Anisotropic thermal conductivity can complicate the performance of semiconducting polymer thin-films in applications such as thermoelectrics and photovoltaics. Anisotropic measurements of low thermal conductivity polymers are challenging, and there are a limited number of appropriate measurement techniques. Suspended film 3-omega is an appropriate technique but has often required unfavorable microfabrication. Herein, we report on the utility of the suspended 3-omega technique that uses shadow masking, and no other microfabrication techniques, in performing anisotropic (in-plane and through-plane) thermal conductivity measurements of polymer films. We report on the necessary conditions for the validity of the 1D suspended-film heat transfer model and provide experimental guidelines for in-plane thermal conductivity measurements of polymer thin-films. Furthermore, for the first time, we report the anisotropic thermal conductivities of N2200 and a low molecular weight P3HT, which are two common n-type and p-type semiconducting polymers. Measured thermal conductivities are compared with predictions from the conventional Cahill-Pohl model and a recent empirical model that more accurately predicts the temperature dependence.

14.
ACS Appl Mater Interfaces ; 10(9): 7709-7716, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29433308

ABSTRACT

Textiles, especially those worn by patients and medical professionals, serve as vectors for proliferating pathogens. Upstream manufacturing techniques and end-user practices, such as transition-metal embedment in textile fibers or alcohol-based disinfectants, can mitigate pathogen growth, but both techniques have their shortcomings. Fiber embedment requires complete replacement of all fabrics in a facility, and the effects of embedded nanoparticles on human health remain unknown. Alcohol-based, end-user disinfectants are short-lived because they quickly volatilize. In this work, common zinc salts are explored as an end-user residual antimicrobial agent. Zinc salts show cost-effective and long-lasting antimicrobial efficacy when solution-deposited on common textiles, such as nylon, polyester, and cotton. Unlike common alcohol-based disinfectants, these zinc salt-treated textiles mitigate microbial growth for more than 30 days and withstand commercial drying. Polyester fabrics treated with ZnO and ZnCl2 were further explored because of their commercial ubiquity and likelihood for rapid commercialization. ZnCl2-treated textiles were found to retain their antimicrobial coating through abrasive testing, whereas ZnO-treated textiles did not. Scanning electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry analyses suggest that ZnCl2 likely hydrolyzes and reacts with portions of the polyester fiber, chemically attaching to the fiber, whereas colloidal ZnO simply sediments and binds with weaker physical interactions.


Subject(s)
Anti-Bacterial Agents/chemistry , Cotton Fiber , Textiles , Zinc Compounds
15.
Nat Commun ; 8: 16134, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28825417

ABSTRACT

This corrects the article DOI: 10.1038/ncomms6446.

16.
Rev Sci Instrum ; 88(1): 014902, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28147667

ABSTRACT

Transient thermoreflectance (TTR) techniques are ubiquitous methods for measuring thermal conductivity of bulk materials and thin-films. Both through-plane thermal conductivity k⊥ and in-plane thermal conductivity k∥ should be independently measured in transversely anisotropic materials. When these properties are measured using conventional TTR techniques, the accuracy of the k∥ measurement is dependent on the accuracy of measuring k⊥ and vice versa. This is especially problematic for thin-films measurements as uncertainty in k⊥ (∼5%) can propagate and grow for uncertainty in k∥. In this paper, we present a method for the simultaneous measurement of k⊥ and k∥ using beam-offset frequency domain thermoreflectance (FDTR) with robust uncertainty estimation. The conventional diffusive heat transfer solution is analyzed to show that offset and heating frequency can independently control the sensitivity to directional thermal conductivity and extract values for k∥ and k⊥. Numerical uncertainty analyses demonstrate that sweeping both heating frequency and beam offset results in a reduction of measurement uncertainty. This modified measurement technique is demonstrated on crystalline alumina (c-Al2O3), amorphous alumina (a-Al2O3), quartz, fused silica, and highly oriented pyrolytic graphite.

17.
Sci Rep ; 6: 38182, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905521

ABSTRACT

Betavoltaic energy converters (i.e., ß-batteries) are attractive power sources because of their potential for high energy densities (>200 MWh/kg) and long duration continuous discharge (>1 year). However, conversion efficiencies have been historically low (<3%). High efficiency devices can be achieved by matching ß-radiation transport length scales with the device physics length scales. In this work, the efficiency of c-Si devices using high-energy (>1 MeV) electrons emitted from 90Sr as a power source is investigated. We propose a design for a >10% efficient betavoltaic device, which generates 1 W of power. A Varian Clinac iX is used to simulate the high-energy electrons emitted from 90Sr, and a high efficiency c-Si photovoltaic cell is used as the converter. The measured conversion efficiency is 16%. This relatively high value is attributed to proper length scale matching and the generation of secondary electrons in c-Si by the primary ß-particles.

18.
Nat Commun ; 5: 5446, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25399761

ABSTRACT

A thermal diode is a two-terminal nonlinear device that rectifies energy carriers (for example, photons, phonons and electrons) in the thermal domain, the heat transfer analogue to the familiar electrical diode. Effective thermal rectifiers could have an impact on diverse applications ranging from heat engines to refrigeration, thermal regulation of buildings and thermal logic. However, experimental demonstrations have lagged far behind theoretical proposals. Here we present the first experimental results for a photon thermal diode. The device is based on asymmetric scattering of ballistic energy carriers by pyramidal reflectors. Recent theoretical work has predicted that this ballistic mechanism also requires a nonlinearity in order to yield asymmetric thermal transport, a requirement of all thermal diodes arising from the second Law of Thermodynamics, and realized here using an 'inelastic thermal collimator' element. Experiments confirm both effects: with pyramids and collimator the thermal rectification is 10.9 ± 0.8%, while without the collimator no rectification is detectable (<0.3%).

19.
Phys Chem Chem Phys ; 15(11): 4024-32, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23400218

ABSTRACT

The thermoelectric properties of a unique hybrid polymer-inorganic nanoparticle system consisting of tellurium nanowires and a conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), can be optimized by both controlling the shape of the nanoparticles and the loading and doping of the polymeric matrix with polar solvents. The mechanism for an observed improvement in power factor is attributed to the unique conducting nature of PEDOT:PSS, which exhibits a transition from a hopping transport-dominated regime to a carrier scattering-dominated regime upon doping with polar solvents. Near this transition, the electrical conductivity can be improved without significantly reducing the thermopower. Relying on this principle, the power factor optimization for this new thermoelectric material is experimentally carried out and found to exceed 100 µW m(-1) K(-2), which is nearly five orders of magnitude greater than pure PEDOT:PSS.

20.
Adv Mater ; 25(11): 1629-33, 2013 Mar 20.
Article in English | MEDLINE | ID: mdl-23355231

ABSTRACT

The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...