Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med Educ ; 23(1): 457, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37340427

ABSTRACT

OBJECTIVES: A partnership model in interprofessional education (IPE) is important in promoting a sense of global citizenship while preparing students for cross-sector problem-solving. However, the literature remains scant in providing useful guidance for the development of an IPE programme co-implemented by external partners. In this pioneering study, we describe the processes of forging global partnerships in co-implementing IPE and evaluate the programme in light of the preliminary data available. METHODS: This study is generally quantitative. We collected data from a total of 747 health and social care students from four higher education institutions. We utilized a descriptive narrative format and a quantitative design to present our experiences of running IPE with external partners and performed independent t-tests and analysis of variance to examine pretest and posttest mean differences in students' data. RESULTS: We identified factors in establishing a cross-institutional IPE programme. These factors include complementarity of expertise, mutual benefits, internet connectivity, interactivity of design, and time difference. We found significant pretest-posttest differences in students' readiness for interprofessional learning (teamwork and collaboration, positive professional identity, roles, and responsibilities). We also found a significant decrease in students' social interaction anxiety after the IPE simulation. CONCLUSIONS: The narrative of our experiences described in this manuscript could be considered by higher education institutions seeking to forge meaningful external partnerships in their effort to establish interprofessional global health education.


Subject(s)
Interprofessional Education , Students, Health Occupations , Humans , Learning , Problem Solving , Universities , Interprofessional Relations , Attitude of Health Personnel
3.
J Physiol ; 597(1): 151-172, 2019 01.
Article in English | MEDLINE | ID: mdl-30285278

ABSTRACT

KEY POINTS: Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT: Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ FIO2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.


Subject(s)
Carotid Body/physiology , Hypoxia/physiopathology , Leptin/physiology , Pulmonary Ventilation/physiology , Sleep/physiology , Wakefulness/physiology , Animals , Leptin/blood , Male , Mice, Inbred C57BL , Mice, Obese , Receptors, Leptin/physiology
4.
Int J Mol Sci ; 13(1): 240-59, 2012.
Article in English | MEDLINE | ID: mdl-22312250

ABSTRACT

An economical and environmentally friendly whey protein fractionation process was developed using supercritical carbon dioxide (sCO(2)) as an acid to produce enriched fractions of α-lactalbumin (α-LA) and ß-lactoglobulin (ß-LG) from a commercial whey protein isolate (WPI) containing 20% α-LA and 55% ß-LG, through selective precipitation of α-LA. Pilot-scale experiments were performed around the optimal parameter range (T = 60 to 65 °C, P = 8 to 31 MPa, C = 5 to 15% (w/w) WPI) to quantify the recovery rates of the individual proteins and the compositions of both fractions as a function of processing conditions. Mass balances were calculated in a process flow-sheet to design a large-scale, semi-continuous process model using SuperproDesigner® software. Total startup and production costs were estimated as a function of processing parameters, product yield and purity. Temperature, T, pressure, P, and concentration, C, showed conflicting effects on equipment costs and the individual precipitation rates of the two proteins, affecting the quantity, quality, and production cost of the fractions considerably. The highest α-LA purity, 61%, with 80% α-LA recovery in the solid fraction, was obtained at T = 60 °C, C = 5% WPI, P = 8.3 MPa, with a production cost of $8.65 per kilogram of WPI treated. The most profitable conditions resulted in 57%-pure α-LA, with 71% α-LA recovery in the solid fraction and 89% ß-LG recovery in the soluble fraction, and production cost of $5.43 per kilogram of WPI treated at T = 62 °C, C = 10% WPI and P = 5.5 MPa. The two fractions are ready-to-use, new food ingredients with a pH of 6.7 and contain no residual acid or chemical contaminants.


Subject(s)
Carbon Dioxide/chemistry , Chromatography, Supercritical Fluid/methods , Milk Proteins/isolation & purification , Animals , Cattle , Chromatography, Supercritical Fluid/economics , Hydrogen-Ion Concentration , Lactalbumin/chemistry , Lactalbumin/isolation & purification , Lactoglobulins/chemistry , Lactoglobulins/isolation & purification , Milk Proteins/chemistry , Pilot Projects , Pressure , Temperature , Whey Proteins
5.
Bioresour Technol ; 102(12): 6696-701, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21511462

ABSTRACT

A process and cost model was developed for fuel ethanol production from winter barley based on the EDGE (Enhanced Dry Grind Enzymatic) process. In this process, in addition to ß-glucanases, which are added to reduce the viscosity of the mash, ß-glucosidase is also added to completely hydrolyze the oligomers obtained during the hydrolysis of ß-glucans to glucose. The model allows determination of capital costs, operating costs, and ethanol production cost for a plant producing 40 million gallons of denatured fuel ethanol annually. A sensitivity study was also performed to examine the effects of ß-glucosidase and barley costs on the final ethanol production cost. The results of this study clearly demonstrate the economic benefit of adding ß-glucosidase. Lower ethanol production cost was obtained compared to that obtained without ß-glucosidase addition in all cases except one where highest ß-glucosidase cost allowance and lowest barley cost were used.


Subject(s)
Biofuels , Bioreactors/economics , Ethanol/metabolism , Hordeum/metabolism , Saccharomyces cerevisiae/metabolism , beta-Glucosidase/metabolism , Hordeum/enzymology , Hydrolysis , Models, Economic
6.
Bioresour Technol ; 97(4): 671-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-15935657

ABSTRACT

'Biodiesel' is the name given to a renewable diesel fuel that is produced from fats and oils. It consists of the simple alkyl esters of fatty acids, most typically the methyl esters. We have developed a computer model to estimate the capital and operating costs of a moderately-sized industrial biodiesel production facility. The major process operations in the plant were continuous-process vegetable oil transesterification, and ester and glycerol recovery. The model was designed using contemporary process simulation software, and current reagent, equipment and supply costs, following current production practices. Crude, degummed soybean oil was specified as the feedstock. Annual production capacity of the plant was set at 37,854,118 l (10 x 10(6)gal). Facility construction costs were calculated to be US dollar 11.3 million. The largest contributors to the equipment cost, accounting for nearly one third of expenditures, were storage tanks to contain a 25 day capacity of feedstock and product. At a value of US dollar 0.52/kg (dollar 0.236/lb) for feedstock soybean oil, a biodiesel production cost of US dollar 0.53/l (dollar 2.00/gal) was predicted. The single greatest contributor to this value was the cost of the oil feedstock, which accounted for 88% of total estimated production costs. An analysis of the dependence of production costs on the cost of the feedstock indicated a direct linear relationship between the two, with a change of US dollar 0.020/l (dollar 0.075/gal) in product cost per US dollar 0.022/kg (dollar 0.01/lb) change in oil cost. Process economics included the recovery of coproduct glycerol generated during biodiesel production, and its sale into the commercial glycerol market as an 80% w/w aqueous solution, which reduced production costs by approximately 6%. The production cost of biodiesel was found to vary inversely and linearly with variations in the market value of glycerol, increasing by US dollar 0.0022/l (dollar 0.0085/gal) for every US dollar 0.022/kg (dollar 0.01/lb) reduction in glycerol value. The model is flexible in that it can be modified to calculate the effects on capital and production costs of changes in feedstock cost, changes in the type of feedstock employed, changes in the value of the glycerol coproduct, and changes in process chemistry and technology.


Subject(s)
Bioelectric Energy Sources/economics , Bioreactors/economics , Models, Economic , Soybean Oil/chemistry , Computer Simulation
7.
J Agric Food Chem ; 51(3): 634-9, 2003 Jan 29.
Article in English | MEDLINE | ID: mdl-12537434

ABSTRACT

Oxygen permeabilities (OP) of CO(2)-casein (CO(2)CN), calcium caseinate (CaCN), and acylated casein (AcCN) films were determined as functions of % relative humidity (% RH), temperature, and plasticizer type. Tensile properties and water vapor permeabilities (WVP) were also measured. Plasticizers were glycerol (GLY) or a 3:1 ratio of GLY:poly(propylene glycol) (PPG), a hydrophobic plasticizer. OP of the CO(2)CN:GLY film was almost twice that of films containing either plasticizer at 35% RH, but its OP approached that of the other films at 70% RH. OP and WVP of films plasticized with GLY were greater than that for films plasticized with PPG. Plasticizer type had little impact on the tensile strength of CO(2)CN films while tensile strength of CaCN-GLY:PPG (3:1) films approximately doubled. Results show that structural dissimilarities in the films contribute to differences in OP only under conditions of low RH where the plasticizing effects of water are not significant.


Subject(s)
Carbon Dioxide/chemistry , Caseins/chemistry , Oxygen/chemistry , Acylation , Chemical Precipitation , Food Packaging , Glycerol , Humidity , Permeability , Plasticizers , Polymers , Propylene Glycols , Temperature , Tensile Strength
8.
Mol Cell Biochem ; 229(1-2): 85-92, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11936850

ABSTRACT

To understand the hypocholesterolemic activity of green tea, our in vitro studies screened the relative efficacy of two structurally distinct green tea catechins, epicatechin (EC) and epigallocatechin gallate (EGCG), on apolipoprotein B-100 (apoB) and lipid production using a well established human hepatoma cell-line, HepG2, as the model system. This study showed that HepG2 cells pretreated with EC and EGCG for 8 h exerted a dose-dependent inhibitory effect on apoB secretion. Total protein and albumin synthesis and secretion were unaffected indicating the effects on apoB secretion to be specific. Under lipid-rich conditions, apoB secretion was markedly reduced by EGCG and to a lesser extent by EC at 50 microM. Mechanistic study showed that tea catechins inhibited apoB secretion via a proteasome-independent pathway as indicated by a lack of response to N-acetyl-leucyl-leucyl-norleucinal (ALLN), a proteasome inhibitor. The effect on apoB secretion was also found to be independent of lipid biosynthesis. In summary, the data suggest that EGCG in contrast to EC is a potent inhibitor of apoB secretion. The results indicate that the gallate moiety in the catechin molecule may result in a beneficial effect on lipid metabolism in terms of apoB secretion.


Subject(s)
Apolipoproteins B/metabolism , Catechin/analogs & derivatives , Catechin/pharmacology , Tea , Anticholesteremic Agents/pharmacology , Apolipoprotein B-100 , Cholesterol, VLDL/metabolism , Cysteine Endopeptidases/metabolism , Humans , Hydroxycholesterols/metabolism , Lipids/biosynthesis , Multienzyme Complexes/metabolism , Proteasome Endopeptidase Complex , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...