Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 139(24): 8138-8145, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28532152

ABSTRACT

In this paper, we report on the noteworthy attractive interaction between organic azides and the portal carbonyls of cucurbiturils. Five homologous bis-α,ω-azidoethylammonium alkanes were prepared, where the number of methylene groups between the ammonium groups ranges from 4 to 8. Their interactions with cucurbit[6]uril were studied by NMR spectroscopy, IR spectroscopy, X-ray crystallography, and computational methods. Remarkably, while the distance between the portal plane and most atoms at the guest end groups increases progressively with the molecular size, the ß-nitrogen atoms maintain a constant distance from the portal plane in all homologues, pointing at a strong attractive interaction between the azide group and the portal. Both crystallography and NMR support a specific electrostatic interaction between the carbonyl and the azide ß-nitrogen, which stabilizes the canonical resonance form with positive charge on the ß-nitrogen and negative charge on the γ-nitrogen. Quantum computational analyses strongly support electrostatics, in the form of orthogonal dipole-dipole interaction, as the main driver for this attraction. The alternative mechanism of n → π* orbital delocalization does not seem to play a significant role in this interaction. The computational studies also indicate that the interaction is not limited to azides, but generalizes to other isoelectronic heteroallene functions, such as isocyanate and isothiocyanate. This essentially unexploited attractive interaction could be more broadly utilized as a tool not only in relation to cucurbituril chemistry, but also for the design of novel supramolecular architectures.


Subject(s)
Azides/chemistry , Macrocyclic Compounds/chemistry , Azides/chemical synthesis , Crystallography, X-Ray , Models, Molecular , Quantum Theory
2.
Chemistry ; 18(18): 5589-605, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22434704

ABSTRACT

Bistable rotaxanes are important design elements of molecular devices for a broad range of applications, such as controlled drug release, molecular rotary motors, and chemical sensors. The host-guest complexes of cucurbit[6]uril and 1,4-bis(alkylaminomethyl)benzene were found to exhibit two stable binding modes with an unexpectedly high barrier between them. Their structural and dynamic properties, kinetic and thermodynamic parameters, as well as different chemical reactivity towards the azide-alkyne [3+2] cycloaddition reaction (click chemistry), were discovered by NMR spectroscopy, X-ray crystallography, and isothermal titration microcalorimetry. The highly stable 2:1 complex, which is formed at room temperature, was found to be a kinetic product, which may be converted to the thermodynamic 1:1 complex upon prolonged heating to 100 °C. The latter is a very stable rotaxane despite the fact that it lacks bulky end groups.


Subject(s)
Macrocyclic Compounds/chemistry , Rotaxanes/chemistry , Binding Sites , Click Chemistry , Crystallography, X-Ray , Models, Molecular , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...