Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 30(27): 8000-9, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24918482

ABSTRACT

Alkanes longer than n = 6 carbons do not spread on the water surface, but condense in a macroscopic lens. However, adding trimethylammonium-based surfactants, C(m)TAB, in submillimolar concentrations causes the alkanes to spread and form a single Langmuir-Gibbs (LG) monolayer of mixed alkanes and surfactant tails, which coexists with the alkane lenses. Upon cooling, this LG film surface-freezes at a temperature T(s) above the bulk freezing temperature T(b). The thermodynamics of surface freezing (SF) of these LG films is studied by surface tension measurements for a range of alkanes (n = 12-21) and surfactant alkyl lengths (m = 14, 16, 18), at several concentrations c. The surface freezing range T(s)-T(b) observed is up to 25 °C, an order of magnitude larger than the temperature range of SF monolayers on the surface of pure alkane melts. The measured (n,T) surface phase diagram is accounted for well by a model based on mixtures' theory, which includes an interchange energy term ω. ω is found to be negative, implying attraction between unlike species, rather than the repulsion found for SF of binary alkane mixtures. Thus, the surfactant/alkane mixing is a necessary condition for the occurrence of SF in these LG films. The X-ray derived structure of the films is presented in an accompanying paper.

2.
Langmuir ; 30(27): 8010-9, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24918630

ABSTRACT

The structure of the Langmuir-Gibbs films of normal alkanes C(n) of length n = 12-21 formed at the surface of aqueous solutions of C(m)TAB surfactants, m = 14, 16, and 18, was studied by surface-specific synchrotron X-ray methods. At high temperatures, a laterally disordered monolayer of mixed alkane molecules and surface-adsorbed surfactant tails is found, having thicknesses well below those of the alkanes' and surfactant tails' extended length. The mixed monolayer undergoes a freezing transition at a temperature T(s)(n,m), which forms, for n ≤ m + 1, a crystalline monolayer of mixed alkane molecules and surfactant tails. For n ≥ m + 2, a bilayer forms, consisting of an upper pure-alkane, crystalline monolayer and a lower liquidlike monolayer. The crystalline monolayer in both cases consists of hexagonally packed extended, surface-normal-aligned chains. The hexagonal lattice constant is found to decrease with increasing n. The films' structure is discussed in conjunction with their thermodynamic properties presented in an accompanying paper.

3.
Opt Express ; 21(16): 19040-6, 2013 Aug 12.
Article in English | MEDLINE | ID: mdl-23938819

ABSTRACT

We explore mode locked operation of a Ti:Sapphire laser with enhanced Kerr nonlinearity, where the threshold for pulsed operation can be continuously tuned down to the threshold for continuous-wave (CW) operation, and even below it. At the point of equality, even though a CW solution does not exist, pulsed oscillation can be realized directly from zero CW oscillation. We experimentally investigate the evolution of the mode locking mechanism towards this point and beyond it, and provide a qualitative theoretical model to explain the results.

4.
Opt Express ; 20(9): 9991-8, 2012 Apr 23.
Article in English | MEDLINE | ID: mdl-22535091

ABSTRACT

The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a 'winner takes all' manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.


Subject(s)
Amplifiers, Electronic , Lasers , Oscillometry/instrumentation , Aluminum Oxide , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feedback
5.
Proc Natl Acad Sci U S A ; 108(14): 5522-5, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21422287

ABSTRACT

Hydrophobicity, the spontaneous segregation of oil and water, can be modified by surfactants. The way this modification occurs is studied at the oil-water interface for a range of alkanes and two ionic surfactants. A liquid interfacial monolayer, consisting of a mixture of alkane molecules and surfactant tails, is found. Upon cooling, it freezes at T(s), well above the alkane's bulk freezing temperature, T(b). The monolayer's phase diagram, derived by surface tensiometry, is accounted for by a mixtures-based theory. The monolayer's structure is measured by high-energy X-ray reflectivity above and below T(s). A solid-solid transition in the frozen monolayer, occurring approximately 3 °C below T(s), is discovered and tentatively suggested to be a rotator-to-crystal transition.


Subject(s)
Alkanes/chemistry , Hydrophobic and Hydrophilic Interactions , Ionic Liquids/chemistry , Models, Chemical , Surface-Active Agents/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...