Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Res ; 10(9): 1127-1140, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35731225

ABSTRACT

The effect of tumor/T-cell interactions on subsequent immune infiltration is undefined. Here, we report that preexposure of melanoma cells to cognate T cells enhanced the chemotaxis of new T cells in vitro. The effect was HLA class I-restricted and IFNγ-dependent, as it was abolished by ß2M-knockdown, MHC-blocking antibodies, JAK1 inhibitors, JAK1-silencing and IFNgR1-blocking antibodies. RNA sequencing (RNA-seq) of 73 melanoma metastases showed a significant correlation between the interferon-inducible p150 isoform of adenosine-deaminase-acting-on-RNA-1 (ADAR1) enzyme and immune infiltration. Consistent with this, cocultures of cognate melanoma/T-cell pairs led to IFNγ-dependent induction of ADAR1-p150 in the melanoma cells, as visualized in situ using dynamic cell blocks, in ovo using fertilized chick eggs, and in vitro with Western blots. ADAR1 staining and RNA-seq in patient-derived biopsies following immunotherapy showed a rise in ADAR1-p150 expression concurrently with CD8+ cell infiltration and clinical response. Silencing ADAR1-p150 abolished the IFNγ-driven enhanced T-cell migration, confirming its mechanistic role. Silencing and overexpression of the constitutive isoform of ADAR1, ADAR1-p110, decreased and increased T-cell migration, respectively. Chemokine arrays showed that ADAR1 controls the secretion of multiple chemokines from melanoma cells, probably through microRNA-mediated regulation. Chemokine receptor blockade eliminated the IFNγ-driven T-cell chemotaxis. We propose that the constitutive ADAR1 downregulation observed in melanoma contributes to immune exclusion, whereas antigen-specific T cells induce ADAR1-p150 by releasing IFNγ, which can drive T-cell infiltration.


Subject(s)
Adenosine Deaminase , Melanoma , MicroRNAs , RNA-Binding Proteins , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Antibodies, Blocking , Cell Movement , Humans , Melanoma/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics
2.
Oncogene ; 38(21): 4169-4181, 2019 05.
Article in English | MEDLINE | ID: mdl-30700831

ABSTRACT

The VICKZ (Igf2bp) family of RNA binding proteins regulate RNA function at many levels, including intracellular RNA localization, RNA stability, and translational control. One or more of the three VICKZ paralogs are upregulated in many different types of cancers. Here, we show how VICKZ1 enhances, and dominant negative VICKZ1 inhibits, cell migration, growth in soft agar, and wound healing in a mouse lung adenocarcinoma cell line containing a constitutively active, mutant Kras. Similarly, modulation of VICKZ1 activity promotes or inhibits metastases upon implantation of these cells into syngeneic mice. To test these effects in a genetic model system, we generated a mouse with an inducible VICKZ1 transgene and found that isolated overexpression of VICKZ1 in the lungs had no noticeable effect on morphology. Although directed overexpression of mutant Kras in the lungs led to the formation of small adenomas, concurrent overexpression of VICKZ1 remarkably accelerated tumor growth and formation of pulmonary adenocarcinomas. VICKZ1-containing ribonucleoprotein complexes are highly enriched in Kras mRNA in lung adenocarcinoma cells, and Kras signaling is enhanced in these cells by overexpression of VICKZ1. Analysis of lung carcinoma patients reveals that elevated VICKZ1 expression correlates with lower overall survival; this reduction is dramatically enhanced in those patients bearing a mutant Kras gene. Our study reveals that RNA binding proteins of the VICKZ family can synergize with Kras to influence signaling and oncogenic activity.


Subject(s)
Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Neoplasm Metastasis/genetics , RNA-Binding Proteins/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation/genetics , Neoplasm Metastasis/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...