Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Rep ; 11(1): 5939, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723301

ABSTRACT

Treatment-related toxicity is an important component in non-small cell lung cancer (NSCLC) management decision-making. Our aim was to evaluate and compare the toxicity rates of curative and palliative radiotherapy with and without chemotherapy. This meta-analysis provides better quantitative estimates of the toxicities compared to individual trials. A systematic review of randomised trials with > 50 unresectable NSCLC patients, treated with curative or palliative conventional radiotherapy (RT) with or without chemotherapy. Data was extracted for oesophagitis, pneumonitis, cardiac events, pulmonary fibrosis, myelopathy and neutropenia by any grade, grade ≥ 3 and treatment-related deaths. Mantel-Haenszel fixed-effect method was used to obtain pooled risk ratio. Forty-nine trials with 8609 evaluable patients were included. There was significantly less grade ≥ 3 acute oesophagitis (6.4 vs 22.2%, p < 0.0001) and any grade oesophagitis (70.4 vs 79.0%, p = 0.04) for sequential CRT compared to concurrent CRT, with no difference in pneumonitis (grade ≥ 3 or any grade), neutropenia (grade ≥ 3), cardiac events (grade ≥ 3) or treatment-related deaths. Although the rate of toxicity increased with intensification of treatment with RT, the only significant difference between treatment regimens was the rate of oesophagitis between the use of concurrent and sequential CRT. This can aid clinicians in radiotherapy decision making for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/complications , Lung Neoplasms/complications , Palliative Care , Radiotherapy/adverse effects , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/therapy , Cause of Death , Chemoradiotherapy/adverse effects , Chemoradiotherapy/methods , Clinical Studies as Topic , Clinical Trials as Topic , Combined Modality Therapy/adverse effects , Combined Modality Therapy/methods , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Odds Ratio , Palliative Care/methods , Prognosis , Radiotherapy/methods , Survival Rate , Treatment Outcome
2.
J Med Imaging Radiat Oncol ; 54(1): 69-75, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20377719

ABSTRACT

Palliative whole brain radiotherapy (WBRT) is often recommended in the management of multiple brain metastases. Allowing for WBRT waiting time, duration of the WBRT course and time to clinical response, it may take 6 weeks from the point of initial assessment for a benefit from WBRT to manifest. Patients who die within 6 weeks ('early death') may not benefit from WBRT and may instead experience a decline in quality of life. This study aimed to develop a prognostic index (PI) that identifies the subset of patients with lung cancer with multiple brain metastases who may not benefit from WBRT because of 'early death'. The medical records of patients with lung cancer who had WBRT recommended for multiple brain metastases over a 10-year period were retrospectively reviewed. Patients were classified as either having died within 6 weeks or having lived beyond 6 weeks. Potential prognostic indicators were evaluated for correlation with 'early death'. A PI was constructed by modelling the survival classification to determine the contribution of these factors towards shortened survival. Of the 275 patients recommended WBRT, 64 (23.22%) died within 6 weeks. The main prognostic factor predicting early death was Eastern Cooperative Oncology Group (ECOG) status >2. Patients with a high PI score (>13) were at higher risk of 'early death'. Twenty-three per cent of patients died prior to benefit from WBRT. ECOG status was the most predictive for 'early death'. Other factors may also contribute towards a poor outcome. With further refinement and validation, the PI could be a valuable clinical decision tool.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Decision Support Techniques , Lung Neoplasms/pathology , Patient Selection , Aged , Brain Neoplasms/mortality , Female , Humans , Logistic Models , Magnetic Resonance Imaging , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Time Factors , Tomography, X-Ray Computed
3.
Australas Radiol ; 49(2): 108-12, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15845045

ABSTRACT

Local and regional recurrence of non-small cell lung cancer is reported to occur in 13-20% of treatment failures after resection. Reported post-recurrent median survival following radiotherapy ranges from 9 to 14 months. This study examines survival following radiotherapy alone for patients with loco-regionally recurring non-small cell lung cancer after initial surgery. Fifty-five patients, receiving radiotherapy at Westmead Hospital between 1979 and 1997, were eligible for study. Data were collected retrospectively by reviewing patient records. The end-point was overall survival. Symptom control was also recorded. Prognostic factors for analysis included age, sex, original presenting stage, disease-free interval (DFI), performance status, site of recurrence, treatment intent and dose. The median overall survival was 11.5 months (95% confidence interval: 8.1-13.0). Survival following treatment with radical intent was 26 months compared to 10.5 months for patients treated with palliative intent (P = 0.025). There was no significant difference in survival for short (< or = 2 years) or long DFI, performance status, radiation dose, age, sex, site of recurrence or stage. Most patients (55%) had partial or complete resolution of symptoms. Radiotherapy results in overall post-recurrence median survival of nearly 1 year, consistent with previous published data. Radical treatment intent predicts better prognosis as a result of patient selection and higher dose. Radiotherapy is effective at palliating symptoms of this disease.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Neoplasm Recurrence, Local , Neoplasm Staging , Palliative Care , Prognosis , Proportional Hazards Models , Radiotherapy Dosage , Retrospective Studies , Survival Analysis
5.
Int J Radiat Oncol Biol Phys ; 47(5): 1443-8, 2000 Jul 15.
Article in English | MEDLINE | ID: mdl-10889400

ABSTRACT

PURPOSE: To compare the costs of radiation treatment on a linear accelerator with a multileaf collimator (MLC) versus treatment on a linear accelerator without an MLC. The study was designed to determine whether the increased throughput of fields and decreased block cutting made the MLC cost effective from an institutional perspective. METHODS AND MATERIALS: The number of fields, basic treatment equivalent, equivalent simple treatment visits, and blocks were prospectively collected for the four linear accelerators. Building, equipment, staffing, and service costs were all obtained in 1999 Australian dollars from the manufacturers and hospital department heads. The Joint Radiation Oncology Centre at Westmead and Nepean Hospitals, which are Australian public hospitals, runs as one unit, with the same staff, and currently operates five linear accelerators. Currently, four of the linear accelerators are used for general radiotherapy, operating for exactly the same hours; the final machine operates more limited hours and is used for specialized radiotherapy techniques and emergency cases. RESULTS: The two machines with MLCs, on average, treated 5,169 fields each, while the two machines without MLCs treated 4,543 fields in a 3-month period, a 12% increase in throughput. The two non-MLC machines required 155 premounted trays (PMTs) in total, while the MLC machines required 17 PMTs. Linear accelerators with MLCs were demonstrably more efficient, and while their capital costs were higher, the reduction in labor costs associated with block cutting and, particularly the increased throughput, more than offset these initial costs. The total cost of a radiation field with an MLC was found to be $A101.69 compared to $A106.98 without an MLC. A multiway sensitivity analysis showed the results to be robust. The worst-case scenario was a departmental savings of $A168,000 per year; the best-case scenario was a savings of $A680,000 per year. CONCLUSION: Under the conditions pertaining to the radiation oncology department in this group of hospitals, and in similar departments, the use of an MLC can be justified.


Subject(s)
Particle Accelerators/economics , Radiotherapy/economics , Australia , Capital Expenditures , Contract Services/economics , Cost-Benefit Analysis , Durable Medical Equipment/economics , Maintenance and Engineering, Hospital/economics , Particle Accelerators/instrumentation , Personnel Staffing and Scheduling , Prospective Studies , Radiotherapy/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...