Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Microvasc Res ; 147: 104479, 2023 05.
Article in English | MEDLINE | ID: mdl-36690271

ABSTRACT

Isolated endothelial cells are valuable in vitro model for vascular research. At present, investigation of disease-relevant changes in vascular endothelium at the molecular level requires established endothelial cell cultures, preserving vascular bed-specific phenotypic characteristics. Vasa vasorum (VV) form a microvascular network around large blood vessels, in both the pulmonary and systemic circulations, that are critically important for maintaining the integrity and oxygen supply of the vascular wall. However, despite the pathophysiological significance of the VV, methods for the isolation and culture of vasa vasorum endothelial cells (VVEC) have not yet been reported. In our prior studies, we demonstrated the presence of hypoxia-induced angiogenic expansion of the VV in the pulmonary artery (PA) of neonatal calves; an observation which has been followed by a series of in vitro studies on isolated PA VVEC. Here we present a detailed protocol for reproducible isolation, purification, and culture of PA VVEC. We show these cells to express generic endothelial markers, (vWF, eNOS, VEGFR2, Tie1, and CD31), as well as progenitor markers (CD34 and CD133), bind lectin Lycopersicon Esculentum, and incorporate acetylated low-density lipoproteins labeled with acetylated LDL (DiI-Ac-LDL). qPCR analysis additionally revealed the expression of CD105, VCAM-1, ICAM-1, MCAM, and NCAM. Ultrastructural electron microscopy and immunofluorescence staining demonstrated that VVEC are morphologically characterized by a developed actin and microtubular cytoskeleton, mitochondrial network, abundant intracellular vacuolar/secretory system, and cell-surface filopodia. VVEC exhibit exponential growth in culture and can be mitogenically activated by multiple growth factors. Thus, our protocol provides the opportunity for VVEC isolation from the PA, and potentially from other large vessels, enabling advances in VV research.


Subject(s)
Adventitia , Vasa Vasorum , Animals , Cattle , Vasa Vasorum/metabolism , Pulmonary Artery/metabolism , Endothelial Cells/metabolism , Biology
2.
Pharmacol Rev ; 74(3): 797-822, 2022 07.
Article in English | MEDLINE | ID: mdl-35738682

ABSTRACT

Adenosine is an evolutionary ancient metabolic regulator linking energy state to physiologic processes, including immunomodulation and cell proliferation. Tumors create an adenosine-rich immunosuppressive microenvironment through the increased release of ATP from dying and stressed cells and its ectoenzymatic conversion into adenosine. Therefore, the adenosine pathway becomes an important therapeutic target to improve the effectiveness of immune therapies. Prior research has focused largely on the two major ectonucleotidases, ectonucleoside triphosphate diphosphohydrolase 1/cluster of differentiation (CD)39 and ecto-5'-nucleotidase/CD73, which catalyze the breakdown of extracellular ATP into adenosine, and on the subsequent activation of different subtypes of adenosine receptors with mixed findings of antitumor and protumor effects. New findings, needed for more effective therapeutic approaches, require consideration of redundant pathways controlling intratumoral adenosine levels, including the alternative NAD-inactivating pathway through the CD38-ectonucleotide pyrophosphatase phosphodiesterase (ENPP)1-CD73 axis, the counteracting ATP-regenerating ectoenzymatic pathway, and cellular adenosine uptake and its phosphorylation by adenosine kinase. This review provides a holistic view of extracellular and intracellular adenosine metabolism as an integrated complex network and summarizes recent data on the underlying mechanisms through which adenosine and its precursors ATP and ADP control cancer immunosurveillance, tumor angiogenesis, lymphangiogenesis, cancer-associated thrombosis, blood flow, and tumor perfusion. Special attention is given to differences and commonalities in the purinome of different cancers, heterogeneity of the tumor microenvironment, subcellular compartmentalization of the adenosine system, and novel roles of purine-converting enzymes as targets for cancer therapy. SIGNIFICANCE STATEMENT: The discovery of the role of adenosine as immune checkpoint regulator in cancer has led to the development of novel therapeutic strategies targeting extracellular adenosine metabolism and signaling in multiple clinical trials and preclinical models. Here we identify major gaps in knowledge that need to be filled to improve the therapeutic gain from agents targeting key components of the adenosine metabolic network and, on this basis, provide a holistic view of the cancer purinome as a complex and integrated network.


Subject(s)
Adenosine Triphosphate , Neoplasms , Adenosine/metabolism , Humans , Neoplasms/drug therapy , Signal Transduction , Tumor Microenvironment
3.
Cell Mol Life Sci ; 79(3): 152, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35212809

ABSTRACT

ATP and adenosine have emerged as important signaling molecules involved in vascular remodeling, retinal functioning and neurovascular coupling in the mammalian eye. However, little is known about the regulatory mechanisms of purinergic signaling in the eye. Here, we used three-dimensional multiplexed imaging, in situ enzyme histochemistry, flow cytometric analysis, and single cell transcriptomics to characterize the whole pattern of purine metabolism in mouse and human eyes. This study identified ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), NTPDase2, and ecto-5'-nucleotidase/CD73 as major ocular ecto-nucleotidases, which are selectively expressed in the photoreceptor layer (CD73), optic nerve head, retinal vasculature and microglia (CD39), as well as in neuronal processes and cornea (CD39, NTPDase2). Specifically, microglial cells can create a spatially arranged network in the retinal parenchyma by extending and retracting their branched CD39high/CD73low processes and forming local "purinergic junctions" with CD39low/CD73- neuronal cell bodies and CD39high/CD73- retinal blood vessels. The relevance of the CD73-adenosine pathway was confirmed by flash electroretinography showing that pharmacological inhibition of adenosine production by injection of highly selective CD73 inhibitor PSB-12489 in the vitreous cavity of dark-adapted mouse eyes rendered the animals hypersensitive to prolonged bright light, manifested as decreased a-wave and b-wave amplitudes. The impaired electrical responses of retinal cells in PSB-12489-treated mice were not accompanied by decrease in total thickness of the retina or death of photoreceptors and retinal ganglion cells. Our study thus defines ocular adenosine metabolism as a complex and spatially integrated network and further characterizes the critical role of CD73 in maintaining the functional activity of retinal cells.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine/metabolism , Light , Retina/radiation effects , 5'-Nucleotidase/antagonists & inhibitors , 5'-Nucleotidase/genetics , Adenosine Diphosphate/analogs & derivatives , Adenosine Diphosphate/pharmacology , Adenosine Triphosphate/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis/drug effects , Apoptosis/radiation effects , Apyrase/genetics , Apyrase/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microglia/metabolism , Photoreceptor Cells/metabolism , Retina/metabolism , Retina/physiology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism
4.
J Med Chem ; 65(3): 2409-2433, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35080883

ABSTRACT

We recently reported N4-substituted 3-methylcytidine-5'-α,ß-methylenediphosphates as CD73 inhibitors, potentially useful in cancer immunotherapy. We now expand the structure-activity relationship of pyrimidine nucleotides as human CD73 inhibitors. 4-Chloro (MRS4598 16; Ki = 0.673 nM) and 4-iodo (MRS4620 18; Ki = 0.436 nM) substitution of the N4-benzyloxy group decreased Ki by ∼20-fold. Primary alkylamine derivatives coupled through a p-amido group with a varying methylene chain length (24 and 25) were functionalized congeners, for subsequent conjugation to carrier or reporter moieties. X-ray structures of hCD73 with two inhibitors indicated a ribose ring conformational adaptation, and the benzyloxyimino group (E configuration) binds to the same region (between the C-terminal and N-terminal domains) as N4-benzyl groups in adenine inhibitors. Molecular dynamics identified stabilizing interactions and predicted conformational diversity. Thus, by N4-benzyloxy substitution, we have greatly enhanced the inhibitory potency and added functionality enabling molecular probes. Their potential as anticancer drugs was confirmed by blocking CD73 activity in tumor tissues in situ.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Cytosine Nucleotides/pharmacology , Diphosphonates/pharmacology , Enzyme Inhibitors/pharmacology , 5'-Nucleotidase/metabolism , Adult , Cytosine Nucleotides/chemical synthesis , Cytosine Nucleotides/metabolism , Diphosphonates/chemical synthesis , Diphosphonates/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/metabolism , Humans , Male , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Neoplasms/enzymology , Palatine Tonsil/enzymology , Protein Binding , Structure-Activity Relationship
5.
Sci Rep ; 11(1): 6035, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727591

ABSTRACT

CD73 is a cell surface ecto-5'-nucleotidase, which converts extracellular adenosine monophosphate to adenosine. High tumor CD73 expression is associated with poor outcome among triple-negative breast cancer (TNBC) patients. Here we investigated the mechanisms by which CD73 might contribute to TNBC progression. This was done by inhibiting CD73 with adenosine 5'-(α, ß-methylene) diphosphate (APCP) in MDA-MB-231 or 4T1 TNBC cells or through shRNA-silencing (sh-CD73). Effects of such inhibition on cell behavior was then studied in normoxia and hypoxia in vitro and in an orthotopic mouse model in vivo. CD73 inhibition, through shRNA or APCP significantly decreased cellular viability and migration in normoxia. Inhibition of CD73 also resulted in suppression of hypoxia-induced increase in viability and prevented cell protrusion elongation in both normoxia and hypoxia in cancer cells. Sh-CD73 4T1 cells formed significantly smaller and less invasive 3D organoids in vitro, and significantly smaller orthotopic tumors and less lung metastases than control shRNA cells in vivo. CD73 suppression increased E-cadherin and decreased vimentin expression in vitro and in vivo, proposing maintenance of a more epithelial phenotype. In conclusion, our results suggest that CD73 may promote early steps of tumor progression, possibly through facilitating epithelial-mesenchymal transition.


Subject(s)
5'-Nucleotidase/metabolism , Epithelial-Mesenchymal Transition , Lung Neoplasms/enzymology , Mammary Neoplasms, Animal/enzymology , Neoplasm Proteins/metabolism , Triple Negative Breast Neoplasms/enzymology , 5'-Nucleotidase/genetics , Animals , Cell Line, Tumor , Female , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Neoplasm Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
Biochem Pharmacol ; 187: 114373, 2021 05.
Article in English | MEDLINE | ID: mdl-33340515

ABSTRACT

The concept of extracellular purinergic signaling was first proposed by Geoffrey Burnstock in the early 1970s. Since then, extracellular ATP and its metabolites ADP and adenosine have attracted an enormous amount of attention in terms of their involvement in a wide range of immunomodulatory, thromboregulatory, angiogenic, vasoactive and other pathophysiological activities in different organs and tissues, including the vascular system. In addition to significant progress in understanding the properties of nucleotide- and adenosine-selective receptors, recent studies have begun to uncover the complexity of regulatory mechanisms governing the duration and magnitude of the purinergic signaling cascade. This knowledge has led to the development of new paradigms in understanding the entire purinome by taking into account the multitude of signaling and metabolic pathways involved in biological effects of ATP and adenosine and compartmentalization of the adenosine system. Along with the "canonical route" of ATP breakdown to adenosine via sequential ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39) and ecto-5'-nucleotidase/CD73 activities, it has now become clear that purine metabolism is the result of concerted effort between ATP release, its metabolism through redundant nucleotide-inactivating and counteracting ATP-regenerating ectoenzymatic pathways, as well as cellular nucleoside uptake and phosphorylation of adenosine to ATP through complex phosphotransfer reactions. In this review I provide an overview of key enzymes involved in adenosine metabolic network, with special emphasis on the emerging roles of purine-converting ectoenzymes as novel targets for cancer and vascular therapies.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphate/metabolism , Adenosine/metabolism , Capillary Permeability/physiology , Vascular Diseases/metabolism , Animals , Capillary Permeability/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Regional Blood Flow/drug effects , Regional Blood Flow/physiology , Signal Transduction/drug effects , Signal Transduction/physiology , Vascular Diseases/drug therapy , Vasoconstrictor Agents/administration & dosage , Vasodilator Agents/administration & dosage
7.
Front Immunol ; 12: 786595, 2021.
Article in English | MEDLINE | ID: mdl-35003105

ABSTRACT

Whereas adenosine 5'-triphosphate (ATP) is the major energy source in cells, extracellular ATP (eATP) released from activated/damaged cells is widely thought to represent a potent damage-associated molecular pattern that promotes inflammatory responses. Here, we provide suggestive evidence that eATP is constitutively produced in the uninflamed lymph node (LN) paracortex by naïve T cells responding to C-C chemokine receptor type 7 (CCR7) ligand chemokines. Consistently, eATP was markedly reduced in naïve T cell-depleted LNs, including those of nude mice, CCR7-deficient mice, and mice subjected to the interruption of the afferent lymphatics in local LNs. Stimulation with a CCR7 ligand chemokine, CCL19, induced ATP release from LN cells, which inhibited CCR7-dependent lymphocyte migration in vitro by a mechanism dependent on the purinoreceptor P2X7 (P2X7R), and P2X7R inhibition enhanced T cell retention in LNs in vivo. These results collectively indicate that paracortical eATP is produced by naïve T cells in response to constitutively expressed chemokines, and that eATP negatively regulates CCR7-mediated lymphocyte migration within LNs via a specific subtype of ATP receptor, demonstrating its fine-tuning role in homeostatic cell migration within LNs.


Subject(s)
Adenosine Triphosphate/metabolism , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Cell Movement/drug effects , Cell Movement/immunology , Intravital Microscopy , Lymph Nodes/cytology , Lymph Nodes/metabolism , Mice , Models, Animal , Purinergic P2X Receptor Antagonists/pharmacology , Pyridines/pharmacology , Rats , Receptors, CCR7/metabolism , Receptors, Purinergic P2X7/metabolism , T-Lymphocytes/metabolism , Tetrazoles/pharmacology
8.
ACS Med Chem Lett ; 11(11): 2253-2260, 2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33214837

ABSTRACT

Ecto-5'-nucleotidase (CD73) catalyzes the hydrolysis of AMP to anti-inflammatory, immunosuppressive adenosine. It is expressed on vascular endothelial, epithelial, and also numerous cancer cells where it strongly contributes to an immunosuppressive microenvironment. In the present study we designed and synthesized fluorescent-labeled CD73 inhibitors with low nanomolar affinity and high selectivity based on N 6 -benzyl-α,ß-methylene-ADP (PSB-12379) as a lead structure. Fluorescein was attached to the benzyl residue via different linkers resulting in PSB-19416 (14b, K i 12.6 nM) and PSB-18332 (14a, K i 2.98 nM) as fluorescent high-affinity probes for CD73. These compounds are anticipated to become useful tools for biological studies, drug screening, and diagnostic applications.

9.
MAbs ; 12(1): 1838036, 2020.
Article in English | MEDLINE | ID: mdl-33146056

ABSTRACT

The extracellular ATP/adenosine axis in the tumor microenvironment (TME) has emerged as an important immune-regulatory pathway. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), otherwise known as CD39, is highly expressed in the TME, both on infiltrating immune cells and tumor cells across a broad set of cancer indications. CD39 processes pro-inflammatory extracellular ATP to ADP and AMP, which is then processed by Ecto-5'-nucleotidase/CD73 to immunosuppressive adenosine. Directly inhibiting the enzymatic function of CD39 via an antibody has the potential to unleash an immune-mediated anti-tumor response via two mechanisms: 1) increasing the availability of immunostimulatory extracellular ATP released by damaged and/or dying cells, and 2) reducing the generation and accumulation of suppressive adenosine within the TME. Tizona Therapeutics has engineered a novel first-in-class fully human anti-CD39 antibody, TTX-030, that directly inhibits CD39 ATPase enzymatic function with sub-nanomolar potency. Further characterization of the mechanism of inhibition by TTX-030 using CD39+ human melanoma cell line SK-MEL-28 revealed an uncompetitive allosteric mechanism (α < 1). The uncompetitive mechanism of action enables TTX-030 to inhibit CD39 at the elevated ATP concentrations reported in the TME. Maximal inhibition of cellular CD39 ATPase velocity was 85%, which compares favorably to results reported for antibody inhibitors to other enzyme targets. The allosteric mechanism of TTX-030 was confirmed via mapping the epitope to a region of CD39 distant from its active site, which suggests possible models for how potent inhibition is achieved. In summary, TTX-030 is a potent allosteric inhibitor of CD39 ATPase activity that is currently being evaluated in clinical trials for cancer therapy.


Subject(s)
Adenosine Triphosphatases/drug effects , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Apyrase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Antibodies, Monoclonal/chemistry , Antibody Affinity , Antineoplastic Agents/chemistry , Binding Sites, Antibody , Cell Line, Tumor , Enzyme Inhibitors/chemistry , Humans
10.
J Cell Sci ; 133(10)2020 05 29.
Article in English | MEDLINE | ID: mdl-32317394

ABSTRACT

Extracellular adenosine mediates diverse anti-inflammatory, angiogenic and vasoactive effects, and has become an important therapeutic target for cancer, which has been translated into clinical trials. This study was designed to comprehensively assess adenosine metabolism in prostate and breast cancer cells. We identified cellular adenosine turnover as a complex cascade, comprising (1) the ectoenzymatic breakdown of ATP via sequential ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1, officially known as ENPP1), ecto-5'-nucleotidase (CD73, also known as NT5E), and adenosine deaminase reactions, and ATP re-synthesis through a counteracting adenylate kinase and members of the nucleoside diphosphate kinase (NDPK, also known as NME/NM23) family; (2) the uptake of nucleotide-derived adenosine via equilibrative nucleoside transporters; and (3) the intracellular adenosine phosphorylation into ATP by adenosine kinase and other nucleotide kinases. The exposure of cancer cells to 1% O2 for 24 h triggered an ∼2-fold upregulation of CD73, without affecting nucleoside transporters, adenosine kinase activity and cellular ATP content. The ability of adenosine to inhibit the tumor-initiating potential of breast cancer cells via a receptor-independent mechanism was confirmed in vivo using a xenograft mouse model. The existence of redundant pathways controlling extracellular and intracellular adenosine provides a sufficient justification for reexamination of the current concepts of cellular purine homeostasis and signaling in cancer.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adenosine Triphosphate , Neoplasms , Adenosine , Adenosine Diphosphate , Adenylate Kinase , Animals , Hypoxia , Male , Mice , Neoplasms/genetics , Nucleotides
11.
Methods Mol Biol ; 2041: 107-116, 2020.
Article in English | MEDLINE | ID: mdl-31646483

ABSTRACT

Studies on pathophysiology and the therapeutic potential of extracellular ATP and other purines represent an important and rapidly evolving field. The integral response of the cell is determined by multiple factors, including the release of endogenous ATP, co-expression of different types of nucleotide- and adenosine-selective receptors, as well as the specific makeup of ectoenzymes governing the duration and magnitude of purinergic signaling. Current findings support the presence of an extensive network of purine-converting ectoenzymes that are co-expressed to a variable extent among the mammalian tissues and share similarities in substrate specificity. Here, we describe a histochemical approach for simultaneous detection of ecto-nucleotidase and tissue-nonspecific alkaline phosphatase (TNAP) activities in the same tissue slice. Further employment of this technique for staining human palatine tonsil cryosections revealed selective distribution of the key ectoenzymes within certain tonsillar structures, including germinal centers and connective tissues (ecto-5'-nucleotidase/CD73), as well as interfollicular area (TNAP and NTPDase1/CD39).


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphate/metabolism , Alkaline Phosphatase/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Immunohistochemistry/methods , Palatine Tonsil/enzymology , Humans
12.
Cancer Cell ; 36(6): 582-596, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31821783

ABSTRACT

Adenosine is a key metabolic and immune-checkpoint regulator implicated in the tumor escape from the host immune system. Major gaps in knowledge that impede the development of effective adenosine-based therapeutics include: (1) lack of consideration of redundant pathways controlling ATP and adenosine levels; (2) lack of distinction between receptor-dependent and -independent effects of adenosine, and (3) focus on extracellular adenosine without consideration of intracellular metabolism and compartmentalization. In light of current clinical trials, we provide an overview of adenosine metabolism and point out the need for a more careful evaluation of the entire purinome in emerging cancer therapies.


Subject(s)
Adenosine Triphosphate/metabolism , Adenosine/metabolism , Neoplasms/therapy , Tumor Escape/drug effects , Animals , Humans , Immunotherapy/methods , Neoplasms/pathology , Signal Transduction/drug effects
13.
J Med Chem ; 62(7): 3677-3695, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30895781

ABSTRACT

Cluster of differentiation 73 (CD73) converts adenosine 5'-monophosphate to immunosuppressive adenosine, and its inhibition was proposed as a new strategy for cancer treatment. We synthesized 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of purine and pyrimidine nucleosides, which represent nucleoside diphosphate analogues, and compared their CD73 inhibitory potencies. In the adenine series, most ribose modifications and 1-deaza and 3-deaza were detrimental, but 7-deaza was tolerated. Uracil substitution with N3-methyl, but not larger groups, or 2-thio, was tolerated. 1,2-Diphosphono-ethyl modifications were not tolerated. N4-(Aryl)alkyloxy-cytosine derivatives, especially with bulky benzyloxy substituents, showed increased potency. Among the most potent inhibitors were the 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of 5-fluorouridine (4l), N4-benzoyl-cytidine (7f), N4-[ O-(4-benzyloxy)]-cytidine (9h), and N4-[ O-(4-naphth-2-ylmethyloxy)]-cytidine (9e) ( Ki values 5-10 nM at human CD73). Selected compounds tested at the two uridine diphosphate-activated P2Y receptor subtypes showed high CD73 selectivity, especially those with large nucleobase substituents. These nucleotide analogues are among the most potent CD73 inhibitors reported and may be considered for development as parenteral drugs.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Purine Nucleotides/chemistry , Purine Nucleotides/pharmacology , Pyrimidine Nucleotides/chemistry , Pyrimidine Nucleotides/pharmacology , Animals , GPI-Linked Proteins/antagonists & inhibitors , Humans , Rats , Structure-Activity Relationship
14.
J Mol Med (Berl) ; 97(3): 341-354, 2019 03.
Article in English | MEDLINE | ID: mdl-30617853

ABSTRACT

ATP and adenosine are important signaling molecules involved in vascular remodeling, retinal function, and neurovascular coupling in the eye. Current knowledge on enzymatic pathways governing the duration and magnitude of ocular purinergic signaling is incompletely understood. By employing sensitive analytical assays, this study dissected ocular purine homeostasis as a complex and coordinated network. Along with previously characterized ecto-5'-nucleotidase/CD73 and adenylate kinase activities, other enzymes have been identified in vitreous fluids, including nucleoside triphosphate diphosphohydrolase (NTPDase), adenosine deaminase, and alkaline phosphatase. Strikingly, activities of soluble adenylate kinase, adenosine deaminase, ecto-5'-nucleotidase/CD73, and alkaline phosphatase, as well as intravitreal concentrations of ATP and ADP, were concurrently upregulated in patients suffering from diabetic retinopathy (DR) with non-clearing vitreous hemorrhage (VH), when compared to DR eyes without VH and control eyes operated due to macular hole or pucker. Additional histochemical analysis revealed selective distribution of key ecto-nucleotidases (NTPDase1/CD39, NTPDase2, ecto-5'-nucleotidase/CD73, and alkaline phosphatase) in the human sensory neuroretina and optic nerve head, and also in pathological neofibrovascular tissues surgically excised from patients with advanced proliferative DR. Collectively, these data provide evidence for specific hemorrhage-related shifts in purine homeostasis in DR eyes from the generation of anti-inflammatory adenosine towards a pro-inflammatory and pro-angiogenic ATP-regenerating phenotype. In the future, identifying the exact mechanisms by which a broad spectrum of soluble and membrane-bound enzymes coordinately regulates ocular purine levels and the further translation of purine-converting enzymes as potential therapeutic targets in the treatment of proliferative DR and other vitreoretinal diseases will be an area of intense interest. KEY MESSAGES: NTPDase, alkaline phosphatase, and adenosine deaminase circulate in human vitreous. Purinergic enzymes are up-regulated in diabetic eyes with vitreous hemorrhage. Soluble adenylate kinase maintains high ATP levels in diabetic retinopathy eyes. Ecto-nucleotidases are co-expressed in the human retina and optic nerve head. Alkaline phosphatase is expressed on neovascular tissues excised from diabetic eyes.


Subject(s)
Adenosine Triphosphate/metabolism , Adenylate Kinase/metabolism , Diabetic Retinopathy/metabolism , Nucleotidases/metabolism , Vitreous Hemorrhage/metabolism , Adenosine/metabolism , Adenosine Diphosphate/metabolism , Adult , Aged , Alkaline Phosphatase/metabolism , Eye/metabolism , Female , Humans , Inflammation , Male , Middle Aged
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1804-1815, 2018 May.
Article in English | MEDLINE | ID: mdl-29514048

ABSTRACT

Intravascular ATP and adenosine have emerged as important regulators of endothelial barrier function, vascular remodeling and neovascularization at various pathological states, including hypoxia, inflammation and oxidative stress. By using human umbilical vein endothelial cells (HUVEC) and bovine vasa vasorum endothelial cells (VVEC) as representatives of macro- and microvessel phenotypes, this study was undertaken to evaluate cellular mechanisms contributing to physiological adaptation of vascular endothelium to hypoxia, with a particular emphasis on ectoenzymatic purine-converting activities and their link to intracellular ATP homeostasis and signaling pathways. Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1/CD39), ecto-5'-nucleotidase/CD73 and ecto-adenylate kinase activities were determined by thin-layer chromatography (TLC) with 3H-labelled nucleotide substrates. Exposure of HUVEC and VVEC to 1% O2 for 4-24 h triggered rather moderate activation of ATP breakdown into adenosine via the CD39-CD73 axis. Additional TLC analysis of salvage pathways revealed the enhanced ability of hypoxic HUVEC to convert cell-incorporated [3H]adenosine into [3H]ADP/ATP. Furthermore, following a period of hypoxia, HUVEC underwent concurrent changes in intracellular signaling manifested in the depletion of putative ATP stores and targeted up-regulation of phospho-p53, p70S6K/mTOR and other tyrosine kinases. The revealed complex implication of both extrinsic and intrinsic mechanisms into a tuned hypoxia-induced control of purine homeostasis and signaling may open up further research for the development of pharmacological treatments to improve endothelial cell function under disease conditions associated with a loss of cellular ATP during oxygen deprivation.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine Triphosphate/metabolism , Apyrase/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Adenosine Diphosphate/metabolism , Animals , Cattle , Cell Hypoxia , GPI-Linked Proteins/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Humans , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism
16.
J Invest Dermatol ; 138(8): 1862-1870, 2018 08.
Article in English | MEDLINE | ID: mdl-29501384

ABSTRACT

Pseudoxanthoma elasticum (PXE) is a rare genetic condition primarily caused by hepatic ABCC6 transporter dysfunction. Most clinical manifestations of PXE are due to premature calcification of elastic fibers. However, the vascular impact of PXE is pleiotropic and remains ill defined. ABCC6 expression has recently been associated with cellular nucleotide export. We studied the impact of ABCC6 deficiency on blood levels of adenosine triphosphate and related metabolites and on soluble nucleotidase activities in PXE patients and Abcc6-/- mice. In addition, we investigated the expression of genes encoding ectocellular purinergic signaling proteins in mouse liver and aorta. Plasma adenosine triphosphate and pyrophosphate levels were significantly reduced in PXE patients and in Abcc6-/- mice, whereas adenosine concentration was not modified. Moreover, 5'-nucleotidase/CD73 activity was increased in the serum of PXE patients and Abcc6-/- mice. Consistent with alterations of purinergic signaling, the expression of genes involved in purine and phosphate transport/metabolism was dramatically modified in Abcc6-/- mouse aorta, with much less impact on the liver. ABCC6 deficiency causes impaired vascular homeostasis and tissue perfusion. Our findings suggest that these alterations are linked to changes in extracellular nucleotide metabolism that are remote from the liver. This opens new perspectives for the understanding of PXE pathophysiology.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Diphosphate/blood , Adenosine Triphosphate/blood , Multidrug Resistance-Associated Proteins/deficiency , Pseudoxanthoma Elasticum/blood , 5'-Nucleotidase/blood , 5'-Nucleotidase/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine/blood , Adenosine/metabolism , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adult , Animals , Aorta/metabolism , Aorta/pathology , Female , GPI-Linked Proteins/blood , GPI-Linked Proteins/metabolism , Humans , Liver/metabolism , Liver/pathology , Loss of Function Mutation , Male , Mice , Mice, Knockout , Middle Aged , Multidrug Resistance-Associated Proteins/genetics , Pseudoxanthoma Elasticum/etiology , Pseudoxanthoma Elasticum/genetics
17.
Nat Commun ; 8: 14108, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28169986

ABSTRACT

Faster acclimatization to high altitude upon re-ascent is seen in humans; however, the molecular basis for this enhanced adaptive response is unknown. We report that in healthy lowlanders, plasma adenosine levels are rapidly induced by initial ascent to high altitude and achieved even higher levels upon re-ascent, a feature that is positively associated with quicker acclimatization. Erythrocyte equilibrative nucleoside transporter 1 (eENT1) levels are reduced in humans at high altitude and in mice under hypoxia. eENT1 deletion allows rapid accumulation of plasma adenosine to counteract hypoxic tissue damage in mice. Adenosine signalling via erythrocyte ADORA2B induces PKA phosphorylation, ubiquitination and proteasomal degradation of eENT1. Reduced eENT1 resulting from initial hypoxia is maintained upon re-ascent in humans or re-exposure to hypoxia in mice and accounts for erythrocyte hypoxic memory and faster acclimatization. Our findings suggest that targeting identified purinergic-signalling network would enhance the hypoxia adenosine response to counteract hypoxia-induced maladaptation.


Subject(s)
Acclimatization/physiology , Adenosine/metabolism , Equilibrative Nucleoside Transporter 1/metabolism , Erythrocytes/physiology , Hypoxia/physiopathology , Receptor, Adenosine A2B/metabolism , 5'-Nucleotidase/blood , 5'-Nucleotidase/metabolism , Adenosine/blood , Adult , Altitude , Altitude Sickness/blood , Altitude Sickness/physiopathology , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Equilibrative Nucleoside Transporter 1/blood , Equilibrative Nucleoside Transporter 1/genetics , Female , GPI-Linked Proteins/blood , GPI-Linked Proteins/metabolism , Healthy Volunteers , Humans , Hypoxia/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/metabolism , Phosphorylation , Receptor, Adenosine A2B/genetics , Signal Transduction/physiology , Ubiquitination , Young Adult
18.
J Mol Med (Berl) ; 95(2): 193-204, 2017 02.
Article in English | MEDLINE | ID: mdl-27638339

ABSTRACT

Clear signaling roles for ATP and adenosine have been established in all tissues, including the eye. The magnitude of signaling responses is governed by networks of enzymes; however, little is known about the regulatory mechanisms of purinergic signaling in the eye. By employing thin-layer chromatographic assays with 3H-labeled substrates, this study aimed to evaluate the role of nucleotide homeostasis in the pathogenesis of vitreoretinal diseases in humans. We have identified soluble enzymes ecto-5'-nucleotidase/CD73, adenylate kinase-1, and nucleoside diphosphate kinase in the vitreous fluid that control active cycling between pro-inflammatory ATP and anti-inflammatory adenosine. Strikingly, patients with proliferative form of diabetic retinopathy (DR) had higher adenylate kinase activity and ATP concentration, when compared to non-proliferative DR eyes and non-diabetic controls operated for rhegmatogenous retinal detachment, macular hole, and pucker. The non-parametric correlation analysis revealed positive correlations between intravitreal adenylate kinase and concentrations of ATP, ADP, and other angiogenic (angiopoietins-1 and -2), profibrotic (transforming growth factor-ß1), and proteolytic (matrix metalloproteinase-9) factors but not erythropoietin and VEGF. Immunohistochemical staining of postmortem human retina additionally revealed selective expression of ecto-5'-nucleotidase/CD73 on the rod-and-cone-containing photoreceptor cells. Collectively, these findings provide novel insights into the regulatory mechanisms that influence purinergic signaling in diseased eye and open up new possibilities in the development of enzyme-targeted therapeutic approaches for prevention and treatment of DR. KEY MESSAGE: Ecto-5'-nucleotidase/CD73 and adenylate kinase-1 circulate in human vitreous fluid. Adenylate kinase activity is high in diabetic eyes with proliferative retinopathy. Diabetic eyes display higher intravitreal ATP/ADP ratio than non-diabetic controls. Soluble adenylate kinase maintains resynthesis of inflammatory ATP in diabetic eyes.


Subject(s)
Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Adenosine/metabolism , Diabetic Retinopathy/metabolism , Retina/metabolism , 5'-Nucleotidase/metabolism , Adenylate Kinase/metabolism , Adult , Aged , Chromatography, Thin Layer , Erythropoietin/metabolism , Female , Humans , Male , Middle Aged , Nucleoside-Diphosphate Kinase/metabolism , Statistics, Nonparametric , Vascular Endothelial Growth Factor A/metabolism , Vitreous Body/enzymology
19.
Circulation ; 134(5): 405-21, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27482003

ABSTRACT

BACKGROUND: High altitude is a challenging condition caused by insufficient oxygen supply. Inability to adjust to hypoxia may lead to pulmonary edema, stroke, cardiovascular dysfunction, and even death. Thus, understanding the molecular basis of adaptation to high altitude may reveal novel therapeutics to counteract the detrimental consequences of hypoxia. METHODS: Using high-throughput, unbiased metabolomic profiling, we report that the metabolic pathway responsible for production of erythrocyte 2,3-bisphosphoglycerate (2,3-BPG), a negative allosteric regulator of hemoglobin-O2 binding affinity, was significantly induced in 21 healthy humans within 2 hours of arrival at 5260 m and further increased after 16 days at 5260 m. RESULTS: This finding led us to discover that plasma adenosine concentrations and soluble CD73 activity rapidly increased at high altitude and were associated with elevated erythrocyte 2,3-BPG levels and O2 releasing capacity. Mouse genetic studies demonstrated that elevated CD73 contributed to hypoxia-induced adenosine accumulation and that elevated adenosine-mediated erythrocyte A2B adenosine receptor activation was beneficial by inducing 2,3-BPG production and triggering O2 release to prevent multiple tissue hypoxia, inflammation, and pulmonary vascular leakage. Mechanistically, we demonstrated that erythrocyte AMP-activated protein kinase was activated in humans at high altitude and that AMP-activated protein kinase is a key protein functioning downstream of the A2B adenosine receptor, phosphorylating and activating BPG mutase and thus inducing 2,3-BPG production and O2 release from erythrocytes. Significantly, preclinical studies demonstrated that activation of AMP-activated protein kinase enhanced BPG mutase activation, 2,3-BPG production, and O2 release capacity in CD73-deficient mice, in erythrocyte-specific A2B adenosine receptor knockouts, and in wild-type mice and in turn reduced tissue hypoxia and inflammation. CONCLUSIONS: Together, human and mouse studies reveal novel mechanisms of hypoxia adaptation and potential therapeutic approaches for counteracting hypoxia-induced tissue damage.


Subject(s)
AMP-Activated Protein Kinases/blood , Adaptation, Physiological/physiology , Altitude Sickness/blood , Erythrocytes/metabolism , Receptor, Adenosine A2B/blood , 2,3-Diphosphoglycerate/blood , 5'-Nucleotidase/blood , 5'-Nucleotidase/deficiency , Acute Lung Injury/physiopathology , Adenosine/blood , Adult , Altitude Sickness/enzymology , Altitude Sickness/physiopathology , Animals , Bisphosphoglycerate Mutase/blood , Enzyme Activation , GPI-Linked Proteins/blood , Humans , Metabolome , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxygen/blood , Phosphorylation , Protein Processing, Post-Translational
20.
Purinergic Signal ; 12(3): 561-74, 2016 09.
Article in English | MEDLINE | ID: mdl-27369815

ABSTRACT

Extracellular ATP is suspected to contribute to migraine pain but regulatory mechanisms controlling pro-nociceptive purinergic mechanisms in the meninges remain unknown. We studied the peculiarities of metabolic and signaling pathways of ATP and its downstream metabolites in rat meninges and in cultured trigeminal cells exposed to the migraine mediator calcitonin gene-related peptide (CGRP). Under resting conditions, meningeal ATP and ADP remained at low nanomolar levels, whereas extracellular AMP and adenosine concentrations were one-two orders higher. CGRP increased ATP and ADP levels in meninges and trigeminal cultures and reduced adenosine concentration in trigeminal cells. Degradation rates for exogenous nucleotides remained similar in control and CGRP-treated meninges, indicating that CGRP triggers nucleotide release without affecting nucleotide-inactivating pathways. Lead nitrate-based enzyme histochemistry of whole mount meninges revealed the presence of high ATPase, ADPase, and AMPase activities, primarily localized in the medial meningeal artery. ATP and ADP induced large intracellular Ca(2+) transients both in neurons and in glial cells whereas AMP and adenosine were ineffective. In trigeminal glia, ATP partially operated via P2X7 receptors. ATP, but not other nucleotides, activated nociceptive spikes in meningeal trigeminal nerve fibers providing a rationale for high degradation rate of pro-nociceptive ATP. Pro-nociceptive effect of ATP in meningeal nerves was reproduced by α,ß-meATP operating via P2X3 receptors. Collectively, extracellular ATP, which level is controlled by CGRP, can persistently activate trigeminal nerves in meninges which considered as the origin site of migraine headache. These data are consistent with the purinergic hypothesis of migraine pain and suggest new targets against trigeminal pain.


Subject(s)
Calcitonin Gene-Related Peptide/metabolism , Migraine Disorders/metabolism , Nucleotides/metabolism , Receptors, Purinergic/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcitonin Gene-Related Peptide/toxicity , Cell Separation , Disease Models, Animal , Homeostasis/physiology , Immunohistochemistry , Male , Meninges , Patch-Clamp Techniques , Rats , Rats, Wistar , Trigeminal Ganglion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...