Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Rev Chem ; 8(6): 471-485, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698142

ABSTRACT

High-entropy materials emerged as a field of research in 2004, when the first research on high-entropy alloys was published. The scope was soon expanded from high-entropy alloys to medium-entropy alloys, as well as to ceramics, polymers and composite materials. A fundamental understanding on high-entropy materials was proposed in 2006 by the 'four core effects' - high-entropy, severe-lattice-distortion, sluggish-diffusion and cocktail effects - which are often used to describe and explain the mechanisms of various peculiar phenomena associated with high-entropy materials. Throughout the years, the effects have been examined rigorously, and their validity has been affirmed. This Perspective discusses the fundamental understanding of the four core effects in high-entropy materials and gives further insights to strengthen the understanding for these effects. All these clarifications are believed to be helpful in understanding low-to-high-entropy materials as well as to aid the design of materials when studying new compositions or pursuing their use in applications.

2.
Materials (Basel) ; 17(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793347

ABSTRACT

The exceptional mechanical properties of Ni-based high entropy alloys are due to the presence of ordered L12 (γ') precipitates embedded within a disordered matrix phase. While the strengthening contribution of the γ' phase is generally accepted, there is no consensus on the precise contribution of the individual strengthening mechanisms to the overall strength. In addition, changes in alloy composition influence several different mechanisms, making the assessment of alloying conditions complex. Multicomponent L12-ordered single-phase alloys were systematically developed with the aid of CALPHAD thermodynamic calculations. The alloying elements Co, Cr, Ti, and Nb were chosen to complexify the Ni3Al structure. The existence of the γ' single phase was validated by microstructure characterization and phase identification. A high-temperature compression test from 500 °C to 1000 °C revealed a positive temperature dependence of strength before reaching the peak strength in the studied alloys NiCoCrAl, NiCoCrAlTi, and NiCoCrAlNb. Ti and Nb alloying addition significantly enhanced the high-temperature yield strengths before the peak temperature. The yield strength was modeled by summing the individual effects of solid solution strengthening, grain boundary strengthening, order strengthening, and cross-slip-induced strengthening. Cross-slip-induced strengthening was shown to be the key contributor to the high-temperature strength enhancement.

4.
Proc Natl Acad Sci U S A ; 120(23): e2211787120, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37252982

ABSTRACT

Understanding the local chemical ordering propensity in random solid solutions, and tailoring its strength, can guide the design and discovery of complex, paradigm-shifting multicomponent alloys. First, we present a simple thermodynamic framework, based solely on binary enthalpies of mixing, to select optimal alloying elements to control the nature and extent of chemical ordering in high-entropy alloys (HEAs). Next, we couple high-resolution electron microscopy, atom probe tomography, hybrid Monte-Carlo, special quasirandom structures, and density functional theory calculations to demonstrate how controlled additions of Al and Ti and subsequent annealing drive chemical ordering in nearly random equiatomic face-centered cubic CoFeNi solid solution. We establish that short-range ordered domains, the precursors of long-range ordered precipitates, inform mechanical properties. Specifically, a progressively increasing local order boosts the tensile yield strengths of the parent CoFeNi alloy by a factor of four while also substantially improving ductility, which breaks the so-called strength-ductility paradox. Finally, we validate the generality of our approach by predicting and demonstrating that controlled additions of Al, which has large negative enthalpies of mixing with the constituent elements of another nearly random body-centered cubic refractory NbTaTi HEA, also introduces chemical ordering and enhances mechanical properties.

5.
Sci Technol Adv Mater ; 24(1): 2158043, 2023.
Article in English | MEDLINE | ID: mdl-36684848

ABSTRACT

In this study, tensile and creep deformation of a high-entropy alloy processed by selective laser melting (SLM) has been investigated; hot ductility drop was identified at first, and the loss of ductility at elevated temperature was associated with intergranular fracture. By modifying the grain boundary morphology from straight to serration, the hot ductility drop issue has been resolved successfully. The serrated grain boundary could be achieved by reducing the cooling rate of solution heat treatment, which allowed the coarsening of L12 structured γ' precipitates to interfere with mobile grain boundaries, resulting in undulation of the grain boundary morphology. Tensile and creep tests at 650°C were conducted, and serrated grain boundary could render a significant increase in tensile fracture strain and creep rupture life by a factor of 3.5 and 400, respectively. Detailed microstructure analysis has indicated that serrated grain boundary could distribute strains more evenly than that of straight morphology. The underlying mechanism of deformation with grain boundary serration was further demonstrated by molecular dynamic simulation, which has indicated that serrated grain boundaries could reduce local strain concentration and provide resistance against intergranular cracking. This is the first study to tackle the hot ductility drop issue in a high-entropy alloy fabricated by SLM; it can provide a guideline to develop future high-entropy alloys and design post heat treatment for elevated temperature applications.

6.
Sci Rep ; 10(1): 12163, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699329

ABSTRACT

A hierarchical microstructure strengthened high entropy superalloy (HESA) with superior cost specific yield strength from room temperature up to 1,023 K is presented. By phase transformation pathway through metastability, HESA possesses a hierarchical microstructure containing a dispersion of nano size disordered FCC particles inside ordered L12 precipitates that are within the FCC matrix. The average tensile yield strength of HESA from room temperature to 1,023 K could be 120 MPa higher than that of advanced single crystal superalloy, while HESA could still exhibit an elongation greater than 20%. Furthermore, the cost specific yield strength of HESA can be 8 times that of some superalloys. A template for lighter, stronger, cheaper, and more ductile high temperature alloy is proposed.

7.
Sci Rep ; 9(1): 14788, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31616021

ABSTRACT

We applied Simmons-Balluffi methods, positron measurements, and neutron diffraction to estimate the vacancy of CoCrFeNi and CoCrFeMnNi high-entropy alloys (HEAs) using Cu as a benchmark. The corresponding formation enthalpies and associated entropies of the HEAs and Cu were calculated. The vacancy-dependent effective free volumes in both CoCrFeNi and CoCrFeMnNi alloys are greater than those in Cu, implying the easier formation of vacancies by lattice structure relaxation of HEAs at elevated temperatures. Spatially resolved synchrotron X-ray measurements revealed different characteristics of CoCrFeNi and CoCrFeMnNi HEAs subjected to quasi-equilibrium conditions at high temperatures. Element-dependent behavior revealed by X-ray fluorescence (XRF) mapping indicates the effect of Mn on the Cantor Alloy.

8.
Sci Rep ; 9(1): 7266, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31086296

ABSTRACT

Although refractory high entropy alloys (RHEAs) have shown potentials to be developed as structural materials for elevated temperature applications, most of the reported oxidation behaviours of RHEA were associated with short term exposures for only up to 48 hours, and there is a lack of understanding on the oxidation mechanism of any RHEA to-date. In this work, by using thermogravimetric analysis, isothermal oxidation was conducted on a novel RHEA at 1000 °C and 1100 °C for up to 200 hours, which is an unprecedented testing duration. The external oxide layer strongly influenced the weight gain behaviours, and it consisted of CrTaO4-based oxide with some dispersion of Al2O3 and Cr2O3. At 1000 °C, the inability to form dense CrTaO4-based oxide layer resulted an exponential dependence of weight gain throughout 200 hours. At 1100 °C, mass gain curve showed two parabolic dependences associated with the formation of protective CrTaO4-based oxide layer and the weight gain after 200 hours was 4.03 mg/cm2, which indicates that it is one of the most oxidation resistant RHEAs comparing to literature data to-date. This work can also provide insights on how to further develop RHEA to withstand long term oxidation at elevated temperatures.

9.
Sci Rep ; 7(1): 12658, 2017 10 04.
Article in English | MEDLINE | ID: mdl-28978946

ABSTRACT

This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L12 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

10.
Sci Rep ; 6: 22306, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26923713

ABSTRACT

In this study, the grain boundary evolution of equiatomic CoCrFeMnNi, CoCrFeNi, and FeCoNi alloys after one-step recrystallization were investigated. The special boundary fraction and twin density of these alloys were evaluated by electron backscatter diffraction analysis. Among the three alloys tested, FeCoNi exhibited the highest special boundary fraction and twin density after one-step recrystallization. The special boundary increment after one-step recrystallization was mainly affected by grain boundary velocity, while twin density was mainly affected by average grain boundary energy and twin boundary energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...