Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasound Med Biol ; 49(5): 1129-1136, 2023 05.
Article in English | MEDLINE | ID: mdl-36740461

ABSTRACT

OBJECTIVE: The morphological dynamics of the median nerve across the level extracted from dynamic ultrasonography are valuable for the diagnosis and evaluation of carpal tunnel syndrome (CTS), but the data extraction requires tremendous labor to manually segment the nerve across the image sequence. Our aim was to provide visually real-time, automated median nerve segmentation and subsequent data extraction in dynamic ultrasonography. METHODS: We proposed a deep-learning model modified from SOLOv2 and tailored for median nerve segmentation. Ensemble strategies combining several state-of-the-art models were also employed to examine whether the segmentation accuracy could be improved. Image data were acquired from nine normal participants and 59 patients with idiopathic CTS. DISCUSSION: Our model outperformed several state-of-the-art models with respect to inference speed, whereas the segmentation accuracy was on a par with that achieved by these models. When evaluated on a single 1080Ti GPU card, our model achieved an intersection over union score of 0.855 and Dice coefficient of 0.922 at 28.9 frames/s. The ensemble models slightly improved segmentation accuracy. CONCLUSION: Our model has great potential for use in the clinical setting, as the real-time, automated extraction of the morphological dynamics of the median nerve allows clinicians to diagnose and treat CTS as the images are acquired.


Subject(s)
Carpal Tunnel Syndrome , Deep Learning , Humans , Median Nerve/diagnostic imaging , Carpal Tunnel Syndrome/diagnostic imaging , Ultrasonography/methods
2.
Diagnostics (Basel) ; 11(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34679591

ABSTRACT

There is an emerging trend to employ dynamic sonography in the diagnosis of entrapment neuropathy, which exhibits aberrant spatiotemporal characteristics of the entrapped nerve when adjacent tissues move. However, the manual tracking of the entrapped nerve in consecutive images demands tons of human labors and impedes its popularity clinically. Here we evaluated the performance of automated median nerve segmentation in dynamic sonography using a variety of deep learning models pretrained with ImageNet, including DeepLabV3+, U-Net, FPN, and Mask-R-CNN. Dynamic ultrasound images of the median nerve at across wrist level were acquired from 52 subjects diagnosed as carpal tunnel syndrome when they moved their fingers. The videos of 16 subjects exhibiting diverse appearance and that of the remaining 36 subjects were used for model test and training, respectively. The centroid, circularity, perimeter, and cross section area of the median nerve in individual frame were automatically determined from the inferred nerve. The model performance was evaluated by the score of intersection over union (IoU) between the annotated and model-predicted data. We found that both DeepLabV3+ and Mask R-CNN predicted median nerve the best with averaged IOU scores close to 0.83, which indicates the feasibility of automated median nerve segmentation in dynamic sonography using deep learning.

SELECTION OF CITATIONS
SEARCH DETAIL
...