Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 239(1): 146-158, 2023 07.
Article in English | MEDLINE | ID: mdl-36978283

ABSTRACT

Protein phosphorylation is a major molecular switch involved in the regulation of stomatal opening and closure. Previous research defined interaction between MAP kinase 12 and Raf-like kinase HT1 as a required step for stomatal movements caused by changes in CO2 concentration. However, whether MPK12 kinase activity is required for regulation of CO2 -induced stomatal responses warrants in-depth investigation. We apply genetic, biochemical, and structural modeling approaches to examining the noncatalytic role of MPK12 in guard cell CO2 signaling that relies on allosteric inhibition of HT1. We show that CO2 /HCO3 - -enhanced MPK12 interaction with HT1 is independent of its kinase activity. By analyzing gas exchange of plant lines expressing various kinase-dead and constitutively active versions of MPK12 in a plant line where MPK12 is deleted, we confirmed that CO2 -dependent stomatal responses rely on MPK12's ability to bind to HT1, but not its kinase activity. We also demonstrate that purified MPK12 and HT1 proteins form a heterodimer in the presence of CO2 /HCO3 - and present structural modeling that explains the MPK12:HT1 interaction interface. These data add to the model that MPK12 kinase-activity-independent interaction with HT1 functions as a molecular switch by which guard cells sense changes in atmospheric CO2 concentration.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Mitogen-Activated Protein Kinases/metabolism , Carbon Dioxide/metabolism , Mutation , Plant Stomata/physiology
2.
Sci Adv ; 8(49): eabq6161, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36475789

ABSTRACT

The continuing rise in the atmospheric carbon dioxide (CO2) concentration causes stomatal closing, thus critically affecting transpirational water loss, photosynthesis, and plant growth. However, the primary CO2 sensor remains unknown. Here, we show that elevated CO2 triggers interaction of the MAP kinases MPK4/MPK12 with the HT1 protein kinase, thus inhibiting HT1 kinase activity. At low CO2, HT1 phosphorylates and activates the downstream negatively regulating CBC1 kinase. Physiologically relevant HT1-mediated phosphorylation sites in CBC1 are identified. In a genetic screen, we identify dominant active HT1 mutants that cause insensitivity to elevated CO2. Dominant HT1 mutants abrogate the CO2/bicarbonate-induced MPK4/12-HT1 interaction and HT1 inhibition, which may be explained by a structural AlphaFold2- and Gaussian-accelerated dynamics-generated model. Unexpectedly, MAP kinase activity is not required for CO2 sensor function and CO2-triggered HT1 inhibition and stomatal closing. The presented findings reveal that MPK4/12 and HT1 together constitute the long-sought primary stomatal CO2/bicarbonate sensor upstream of the CBC1 kinase in plants.

3.
Plant J ; 96(5): 1018-1035, 2018 12.
Article in English | MEDLINE | ID: mdl-30203878

ABSTRACT

Respiration in leaves and the continued elevation in the atmospheric CO2 concentration cause CO2 -mediated reduction in stomatal pore apertures. Several mutants have been isolated for which stomatal responses to both abscisic acid (ABA) and CO2 are simultaneously defective. However, there are only few mutations that impair the stomatal response to elevated CO2 , but not to ABA. Such mutants are invaluable in unraveling the molecular mechanisms of early CO2 signal transduction in guard cells. Recently, mutations in the mitogen-activated protein (MAP) kinase, MPK12, have been shown to partially impair CO2 -induced stomatal closure. Here, we show that mpk12 plants, in which MPK4 is stably silenced specifically in guard cells (mpk12 mpk4GC homozygous double-mutants), completely lack CO2 -induced stomatal responses and have impaired activation of guard cell S-type anion channels in response to elevated CO2 /bicarbonate. However, ABA-induced stomatal closure, S-type anion channel activation and ABA-induced marker gene expression remain intact in the mpk12 mpk4GC double-mutants. These findings suggest that MPK12 and MPK4 act very early in CO2 signaling, upstream of, or parallel to the convergence of CO2 and ABA signal transduction. The activities of MPK4 and MPK12 protein kinases were not directly modulated by CO2 /bicarbonate in vitro, suggesting that they are not direct CO2 /bicarbonate sensors. Further data indicate that MPK4 and MPK12 have distinguishable roles in Arabidopsis and that the previously suggested role of RHC1 in stomatal CO2 signaling is minor, whereas MPK4 and MPK12 act as key components of early stomatal CO2 signal transduction.


Subject(s)
Arabidopsis Proteins/physiology , Mitogen-Activated Protein Kinases/physiology , Plant Stomata/physiology , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Carbonic Acid/metabolism , Mitogen-Activated Protein Kinases/metabolism , Plant Stomata/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...