Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 478(2257): 20210605, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35153612

ABSTRACT

Tsunami hazards have been observed to cause soil instability resulting in substantial damage to coastal infrastructure. Studying this problem is difficult owing to tsunamis' transient, non-uniform and large loading characteristics. To create realistic tsunami conditions in a laboratory environment, we control the body force using a centrifuge facility. With an apparatus specifically designed to mimic tsunami inundation in a scaled-down model, we examine the effects of an embedded impermeable layer on soil instability: the impermeable layer represents a man-made pavement, a building foundation, a clay layer and alike. The results reveal that the effective vertical soil stress is substantially reduced at the underside of the impermeable layer. During the sudden runup flow, this instability is caused by a combination of temporal dislocation of soil grains and an increase in pore pressure under the impermeable layer. The instability during the drawdown phase is caused by the development of excess pore-pressure gradients, and the presence of the impermeable layer substantially enhances the pressure gradients leading to greater soil instability. The laboratory results demonstrate that the presence of an impermeable layer plays an important role in weakening the soil resistance under tsunami-like rapid runup and drawdown processes.

2.
IEEE Trans Vis Comput Graph ; 28(1): 33-42, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34587046

ABSTRACT

3D asymmetric tensor fields have found many applications in science and engineering domains, such as fluid dynamics and solid mechanics. 3D asymmetric tensors can have complex eigenvalues, which makes their analysis and visualization more challenging than 3D symmetric tensors. Existing research in tensor field visualization focuses on 2D asymmetric tensor fields and 3D symmetric tensor fields. In this paper, we address the analysis and visualization of 3D asymmetric tensor fields. We introduce six topological surfaces and one topological curve, which lead to an eigenvalue space based on the tensor mode that we define. In addition, we identify several non-topological feature surfaces that are nonetheless physically important. Included in our analysis are the realizations that triple degenerate tensors are structurally stable and form curves, unlike the case for 3D symmetric tensors fields. Furthermore, there are two different ways of measuring the relative strengths of rotation and angular deformation in the tensor fields, unlike the case for 2D asymmetric tensor fields. We extract these feature surfaces using the A-patches algorithm. However, since three of our feature surfaces are quadratic, we develop a method to extract quadratic surfaces at any given accuracy. To facilitate the analysis of eigenvector fields, we visualize a hyperstreamline as a tree stem with the other two eigenvectors represented as thorns in the real domain or the dual-eigenvectors as leaves in the complex domain. To demonstrate the effectiveness of our analysis and visualization, we apply our approach to datasets from solid mechanics and fluid dynamics.

3.
IEEE Trans Vis Comput Graph ; 26(1): 270-279, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31425099

ABSTRACT

Asymmetric tensor fields have found applications in many science and engineering domains, such as fluid dynamics. Recent advances in the visualization and analysis of 2D asymmetric tensor fields focus on pointwise analysis of the tensor field and effective visualization metaphors such as colors, glyphs, and hyperstreamlines. In this paper, we provide a novel multi-scale topological analysis framework for asymmetric tensor fields on surfaces. Our multi-scale framework is based on the notions of eigenvalue and eigenvector graphs. At the core of our framework are the identification of atomic operations that modify the graphs and the scale definition that guides the order in which the graphs are simplified to enable clarity and focus for the visualization of topological analysis on data of different sizes. We also provide efficient algorithms to realize these operations. Furthermore, we provide physical interpretation of these graphs. To demonstrate the utility of our system, we apply our multi-scale analysis to data in computational fluid dynamics.

4.
IEEE Trans Vis Comput Graph ; 22(3): 1248-60, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26441450

ABSTRACT

Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

5.
IEEE Trans Vis Comput Graph ; 17(12): 1979-88, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22034315

ABSTRACT

Asymmetric tensor field visualization can provide important insight into fluid flows and solid deformations. Existing techniques for asymmetric tensor fields focus on the analysis, and simply use evenly-spaced hyperstreamlines on surfaces following eigenvectors and dual-eigenvectors in the tensor field. In this paper, we describe a hybrid visualization technique in which hyperstreamlines and elliptical glyphs are used in real and complex domains, respectively. This enables a more faithful representation of flow behaviors inside complex domains. In addition, we encode tensor magnitude, an important quantity in tensor field analysis, using the density of hyperstreamlines and sizes of glyphs. This allows colors to be used to encode other important tensor quantities. To facilitate quick visual exploration of the data from different viewpoints and at different resolutions, we employ an efficient image-space approach in which hyperstreamlines and glyphs are generated quickly in the image plane. The combination of these techniques leads to an efficient tensor field visualization system for domain scientists. We demonstrate the effectiveness of our visualization technique through applications to complex simulated engine fluid flow and earthquake deformation data. Feedback from domain expert scientists, who are also co-authors, is provided.

6.
IEEE Trans Vis Comput Graph ; 15(1): 106-22, 2009.
Article in English | MEDLINE | ID: mdl-19008559

ABSTRACT

The gradient of a velocity vector field is an asymmetric tensor field which can provide critical insight that is difficult to infer from traditional trajectory-based vector field visualization techniques. We describe the structures in the eigenvalue and eigenvector fields of the gradient tensor and how these structures can be used to infer the behaviors of the velocity field. To illustrate the structures in asymmetric tensor fields, we introduce the notions of eigenvalue and eigenvector manifolds. These concepts afford a number of theoretical results that clarify the connections between symmetric and antisymmetric components in tensor fields. In addition, these manifolds naturally lead to partitions of tensor fields, which we use to design effective visualization strategies. Both eigenvalue manifold and eigenvector manifold are supported by a tensor reparameterization with physical meaning. This allows us to relate our tensor analysis to physical quantities such as rotation, angular deformation, and dilation, which provide physical interpretation of our tensor-driven vector field analysis in the context of fluid mechanics. To demonstrate the utility of our approach, we have applied our visualization techniques and interpretation to the study of the Sullivan Vortex as well as computational fluid dynamics simulation data.


Subject(s)
Algorithms , Computer Graphics , Image Interpretation, Computer-Assisted/methods , Models, Theoretical , User-Computer Interface , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...