Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 7: 13253, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811844

ABSTRACT

Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

2.
J Phys Condens Matter ; 25(28): 286001, 2013 Jul 17.
Article in English | MEDLINE | ID: mdl-23779069

ABSTRACT

We investigate the role of magnetic impurities in the transport properties of surface states on a three-dimensional topological insulator. First, we use second-order perturbation theory and the Boltzmann transport equation to calculate the magnetically induced resistivity in a topological insulator. Our result shows a non-perturbative behavior when conducting electrons and magnetic impurities' spins are antiferromagnetically coupled. The surface resistivity is found to display an oscillatory rather than isotropic behavior compared to the conventional Kondo effect. Both the variational method and renormalization group (RG) analysis are employed to compute the Kondo temperature, through which the non-perturbative behavior is confirmed. We further study the RG flows and demonstrate that the RG trajectories flow into a strong coupling regime if coupling is antiferromagnetic. Our work is motivated by the recent transport experiments with surface currents on topological insulators. Our calculation is qualitatively consistent with the low temperature dip observed in the experimental R-T curve and might be one of the possible origins of the dip.

SELECTION OF CITATIONS
SEARCH DETAIL
...