Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 16: 1392304, 2024.
Article in English | MEDLINE | ID: mdl-38863782

ABSTRACT

Background: Age-related decline in cognitive function is often linked to changed prefrontal cortex (PFC) activity and heart rate variability (HRV). Mild cognitive impairment (MCI), a transitional stage between normal aging and dementia, might have further degeneration beyond aging. This study aimed to investigate the differences between young and older adults with or without MCI in cognitive functions, task-induced PFC activation and HRV changes. Methods: Thirty-one healthy young adults (YA), 44 older adults (OA), and 28 older adults with MCI (OA-MCI) were enrolled and compared in this cross-sectional study. Each participant received a one-time assessment including cognitive and executive functions, as well as the simultaneous recording of PFC activity and HRV during a cognitive task paradigm. Results: We observed age-related decrease in global cognitive functions, executive functions, HRV, and increase in PFC activity. The MCI further deteriorated the global cognitive and executive performances, but not the HRV or the prefrontal activation. Conclusion: Older people showed lower performances in general cognitive function and executive function, compensatory increase of PFC activity, and reduced HRV. Older people with MCI had further deterioration in cognitive performance, but not in PFC activation and HRV.

2.
Article in English | MEDLINE | ID: mdl-38743389

ABSTRACT

BACKGROUND: The difficulties in obstacle walking are significant in people with Parkinson's disease (PD) leading to an increased fall risk. Effective interventions to improve obstacle walking with possible training-related neuroplasticity changes are needed. We developed two different exercise programs, complex walking training and motor-cognitive training, both challenging motor and cognitive function for people with PD to improve obstacle walking. AIM: To investigate the effects of these two novel training programs on obstacle walking and brain activities in PD. DESIGN: A single-center randomized, single-blind controlled study. SETTING: University laboratory; outpatient. POPULATION: Individuals with idiopathic PD. METHODS: Thirty-two participants were randomly assigned to the complex walking training group (N.=11), motor-cognitive training group (N.=11) or control group (N.=10). Participants in training groups received exercises for 40 minutes/session, with a total of 12-session over 6 weeks. Control group did not receive additional training. Primary outcomes included obstacle walking, and brain activities (prefrontal cortex (PFC), premotor cortex (PMC), and supplementary motor area (SMA)) during obstacle walking by using functional near-infrared spectroscopy. Secondary outcomes included obstacle crossing, timed up and go test (TUG), cognitive function in different domains, and fall efficacy scale (FES-I). RESULTS: The motor-cognitive training group demonstrated greater improvements in obstacle walking speed and stride length, SMA activity, obstacle crossing velocity and stride length, digit span test, and TUG than the control group. The complex walking training did not show significant improvement in obstacle walking or change in brain activation compared with control group. However, the complex walking training resulted in greater improvements in Rey-Osterrieth Complex Figure test, TUG and FES-I compared with the control group. CONCLUSIONS: Our 12-session of the cognitive-motor training improved obstacle walking performance with increased SMA activities in people with PD. However, the complex walking training did not lead such beneficial effects as the cognitive-motor training. CLINICAL REHABILITATION IMPACT: The cognitive-motor training is suggested as an effective rehabilitation program to improve obstacle walking ability in individuals with PD.

3.
J Nutr Health Aging ; 28(6): 100237, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643610

ABSTRACT

OBJECTIVES: To investigate the effects of physical training on depression and related quality of life in pre-frail and frail individuals. DESIGN: A systematic review and meta-analysis. PARTICIPANTS: Pre-frail and frail older adults. METHODS: Five electronic databases, including PubMed, Cochrane, Medline, CINAHL, and Wiley were searched through December 2023. Randomized controlled trials (RCT) comparing physical training with usual care, health education, or light-intensity exercise were included. Outcomes included depression and depression-related quality of life. The quality of the included studies was assessed using Physiotherapy Evidence Database (PEDro) score, and the Cochrane Risk of Bias Tool was used to assess the risk of bias. Meta-analysis was performed using the RevMan5.4. The certainty of the evidence was evaluated by The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) approach. RESULTS: Ten articles with 589 participants met the inclusion criteria and were included. The pooled analysis indicated that depression (SMD = -0.55, 95%CI = -0.92, -0.17, p = 0.004) and mental health status in life (SMD = 1.05, 95%CI = 0.59, 1.50, p < 0.00001) improved significantly in the experimental group. The results of subgroup analysis revealed that the beneficial effects of physical training were significant only in frail older adults but not in pre-frail older adults. CONCLUSION: This meta-analysis showed that the positive effects of physical training on depression and related quality of life were evident for people with frailty. However, no positive results were observed in pre-frail older adults, indicating the need for further investigation in this subgroup.


Subject(s)
Depression , Frail Elderly , Quality of Life , Humans , Depression/therapy , Aged , Frail Elderly/psychology , Frail Elderly/statistics & numerical data , Exercise , Aged, 80 and over , Exercise Therapy/methods , Randomized Controlled Trials as Topic , Female , Male
4.
Front Aging Neurosci ; 15: 1177082, 2023.
Article in English | MEDLINE | ID: mdl-37333460

ABSTRACT

Background: Growing evidence shows the cognitive function influences the motor performance. The prefrontal cortex (PFC) as a part of the executive locomotor pathway is also important for cognitive function. This study investigated the differences in motor function and brain activity among older adults with different cognitive levels, and examined the significance of cognition on motor functions. Methods: Normal control (NC), individuals with mild cognitive impairment (MCI) or mild dementia (MD) were enrolled in this study. All participants received a comprehensive assessment including cognitive function, motor function, PFC activity during walking, and fear of fall. The assessment of cognitive function included general cognition, attention, executive function, memory, and visuo-spatial. The assessment of motor function included timed up and go (TUG) test, single walking (SW), and cognitive dual task walking (CDW). Results: Individuals with MD had worse SW, CDW and TUG performance as compared to individuals with MCI and NC. These gait and balance performance did not differ significantly between MCI and NC. Motor functions all correlated with general cognition, attention, executive function, memory, and visuo-spatial ability. Attention ability measured by trail making test A (TMT-A) was the best predictor for TUG and gait velocity. There were no significant differences in PFC activity among three groups. Nevertheless, the PFC activated more during CDW as compared with SW in individuals with MCI (p = 0.000), which was not demonstrated in the other two groups. Conclusion: MD demonstrated worse motor function as compared to NC and MCI. The greater PFC activity during CDW in MCI may be considered as a compensatory strategy for maintaining the gait performance. Motor function was related to the cognitive function, and the TMT A was the best predictor for the gait related performance in present study among older adults.

5.
Sci Rep ; 12(1): 8490, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589771

ABSTRACT

The concurrent additional tasking impacts the walking performance, and such impact is even greater in individuals with mild cognitive impairment (MCI) than in healthy elders. However, effective training program to improve dual task walking ability for the people with MCI is not immediately provided. Therefore, this study aimed to determine the effects of cognitive and motor dual task walking training on dual task walking performance and the responding brain changes in older people with MCI. Thirty older adults with MCI were randomly allocated to receive 24 sessions of 45-min cognitive dual task training (CDTT, n = 9), motor dual task training (MDTT, n = 11), or conventional physical therapy (CPT, n = 10). Gait performance and brain activation during single and dual task walking, and cognitive function assessed by trail-making test (TMT-A, B) and digit span test were measured at pre-, post-test, and 1-month follow-up. Both CDTT and MDTT improved dual task walking with responding activation changes in specific brain areas. The improvements in motor dual task walking performance after both dual task trainings were significantly better than after CPT in the older adults with MCI. Both cognitive and motor dual task training were feasible and beneficial to improve dual task walking ability in older adults with MCI.Trial Registration: The trial was registered to Thai Clinical Trial Registry and the registration number is TCTR20180510002 (first registration date: 10/05/2018).


Subject(s)
Cognitive Dysfunction , Walking , Aged , Brain , Cognition/physiology , Cognitive Dysfunction/therapy , Gait/physiology , Humans , Walking/physiology
6.
J Neurol Phys Ther ; 46(4): 260-269, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35404916

ABSTRACT

BACKGROUND AND PURPOSE: In people with Parkinson disease (PD), gait performance deteriorating during dual-task walking has been noted in previous studies. However, the effects of different types of dual tasks on gait performance and brain activation are still unknown. The purpose of this study was to investigate cognitive and motor dual-task walking performance on multiarea brain activity in individuals with PD. METHODS: Twenty-eight participants with PD were recruited and performed single walking (SW), walking while performing a cognitive task (WCT), and walking while performing a motor task (WMT) at their self-selected speed. Gait performance including walking speed, stride length, stride time, swing cycle, temporal and spatial variability, and dual-task cost (DTC) was recorded. Brain activation of the prefrontal cortex (PFC), premotor cortex (PMC), and supplementary motor areas (SMA) were measured using functional near-infrared spectroscopy during walking. RESULTS: Walking performance deteriorated upon performing a secondary task, especially the cognitive task. Also, a higher and more sustained activation in the PMC and SMA during WCT, as compared with the WMT and SW, in the late phase of walking was found. During WMT, however, the SMA and PMC did not show increased activation compared with during SW. Moreover, gait performance was negatively correlated with PMC and SMA activity during different walking tasks. DISCUSSION AND CONCLUSIONS: Individuals with mild to moderate PD demonstrated gait deterioration during dual-task walking, especially during WCT. The SMA and PMC were further activated in individuals with PD when performing cognitive dual-task walking.Supplemental Digital Content is Available in the Text.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A383 ).


Subject(s)
Parkinson Disease , Brain , Cognition/physiology , Gait/physiology , Humans , Walking/physiology
7.
NeuroRehabilitation ; 51(1): 171-180, 2022.
Article in English | MEDLINE | ID: mdl-35311722

ABSTRACT

BACKGROUND: Inadequate ankle control influences walking ability in people after stroke. Walking on inclined surface activates ankle muscles and movements. However, the effect of inclined treadmill training on ankle control is not clear. OBJECTIVE: To investigate the effects of inclined treadmill training on ankle control in individuals with inadequate ankle control after chronic stroke. METHODS: This was a randomized single-blinded study. Eighteen participants were randomly assigned to receive 12 sessions of 30 min inclined (n = 9) or regular (n = 9) treadmill training and 5 min over-ground walking training. The outcomes included ankle control during walking, muscle strength of affected leg, walking performance, and stair climbing performance. RESULTS: Inclined treadmill training significantly improved ankle dorsiflexion at initial contact (p = 0.002), increased tibialis anterior activities (p = 0.003 at initial contact, p = 0.006 in swing phase), and decreased dynamic plantarflexors spasticity (p = 0.027) as compared with regular treadmill training. Greater improvements were also shown in stair climbing with affected leg leading (p = 0.006) and affected knee extensors strength (p = 0.002) after inclined treadmill training. CONCLUSIONS: Inclined treadmill training was proposed to improve inadequate ankle control after chronic stroke. Inclined treadmill training also improved the stair climbing ability accompanied with increased muscle strength of the affected lower extremity.


Subject(s)
Stroke Rehabilitation , Stroke , Ankle , Exercise Therapy , Gait/physiology , Humans , Lower Extremity , Pilot Projects , Stroke/complications , Walking/physiology
8.
Spinal Cord ; 59(6): 684-692, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33024299

ABSTRACT

STUDY DESIGN: Double-blinded randomized controlled pilot trial. OBJECTIVES: The present study aimed to investigate the effects of multiple sessions of tDCS followed by exercise on neuropathic pain and brain activity in individuals with chronic SCI. SETTING: Rehabilitation center in Taipei, Taiwan. METHODS: Twelve individuals with neuropathic pain after SCI were randomized into the experimental (real) or control (sham) tDCS group. All participants received 12 sessions of real or sham tDCS, and moderate upper body exercises over 4-6 weeks. Pain intensity, characters of pain, self-rating change of pain, brain activity, and quality of life were assessed at pre, posttest, and 4-week follow-up. RESULTS: The between-group differences (95% CI) of pain intensity at posttest and at 4-week follow-up were -2.2/10 points (-3.0 to 1.0, p = 0.060) and -2.0/10 points (-5.0 to -0.4, p = 0.035), respectively. The between-group differences of paresthesia/dysesthesia pain character were -2.0/10 points (-3.2 to 1.0, p = 0.053) at posttest and -2.3/10 points (-5.0 to 2.5, p = 0.054) at follow-up. No significant changes in brain activity and quality of life were noted at post-intervention and follow-up in both groups. CONCLUSIONS: The multiple sessions of anodal tDCS combined with moderate upper body exercise were feasible for individuals with neuropathic pain after spinal cord injury. However, the analgesic effect was not superior to exercise alone after 12 sessions of intervention, and the beneficial effect was observed at 4-week follow-up.


Subject(s)
Neuralgia , Spinal Cord Injuries , Transcranial Direct Current Stimulation , Double-Blind Method , Humans , Neuralgia/etiology , Neuralgia/therapy , Pilot Projects , Quality of Life , Spinal Cord Injuries/complications , Spinal Cord Injuries/therapy
9.
Parkinsons Dis ; 2019: 9626934, 2019.
Article in English | MEDLINE | ID: mdl-30918623

ABSTRACT

INTRODUCTION: Parkinson's disease (PD) is a common neurodegenerative disorder that may increase the risk of falls, functional limitation, and balance deficits. Tai Chi was used as an option for improving balance in people with PD. The aim of this meta-analysis was to evaluate the effects of Tai Chi on falls, balance, and functional mobility in individuals with PD. METHOD: The literature search was conducted in PubMed, the Cochrane Library, CINAHL, PEDro, Medline, Embase, sportDISCUS, Trip, and the National Digital Library of Theses and Dissertations in Taiwan. Randomized controlled trials (RCTs) analyzing the effects of Tai Chi, compared to no intervention or to other physical training, on falls, functional mobility, and balance in PD patients were selected. The outcome measurements included fall rates, Berg Balance Scale (BBS), Functional Reach (FR) test, and the Timed Up and Go (TUG) test. Two reviewers independently assessed the methodological quality and extracted data from the studies using the PEDro scale. RESULTS: Five RCTs that included a total of 355 PD patients were included in this review. The quality of evidence in these studies was rated as moderate to high. Compared to no intervention or other physical training, Tai Chi significantly decreased fall rates (odds ratio = 0.47, 95% confidence interval (CI) 0.30 to 0.74, and p=0.001) and significantly improved balance and functional mobility (BBS mean difference (MD) = 3.47, 95% CI 2.11 to 4.80, and p < 0.001; FR MD = 3.55 cm, 95% CI 1.88 to 5.23, and p < 0.001; TUG MD = -1.06 s, 95% CI -1.61 to -0.51, and p < 0.001) in people with PD. CONCLUSION: This meta-analysis provides moderate- to high-quality evidence from five RCTs that Tai Chi could be a good physical training strategy for preventing falls and improving balance and functional mobility in people with PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...