Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 193(2): 1197-1212, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37335936

ABSTRACT

Domestication is the long and complex process underlying the evolution of crops, in which artificial directional selection transformed wild progenitors into the desired form, affecting genomic variation and leaving traces of selection at targeted loci. However, whether genes controlling important domestication traits follow the same evolutionary pattern expected under the standard selective sweep model remains unclear. With whole-genome resequencing of mungbean (Vigna radiata), we investigated this issue by resolving its global demographic history and targeted dissection of the molecular footprints of genes underlying 2 key traits representing different stages of domestication. Mungbean originated in Asia, and the Southeast Asian wild population migrated to Australia about 50 thousand generations ago. Later in Asia, the cultivated form diverged from the wild progenitor. We identified the gene associated with the pod shattering resistance trait, VrMYB26a, with lower expression across cultivars and reduced polymorphism in the promoter region, reflecting a hard selective sweep. On the other hand, the stem determinacy trait was associated with VrDet1. We found that 2 ancient haplotypes of this gene have lower gene expression and exhibited intermediate frequencies in cultivars, consistent with selection favoring independent haplotypes in a soft selective sweep. In mungbean, contrasting signatures of selection were identified from the detailed dissection of 2 important domestication traits. The results suggest complex genetic architecture underlying the seemingly simple process of directional artificial selection and highlight the limitations of genome-scan methods relying on hard selective sweeps.


Subject(s)
Fabaceae , Vigna , Vigna/genetics , Quantitative Trait Loci , Domestication , Fabaceae/genetics , Demography , Selection, Genetic
2.
Nat Ecol Evol ; 5(8): 1135-1144, 2021 08.
Article in English | MEDLINE | ID: mdl-34140651

ABSTRACT

Balancing selection is frequently invoked as a mechanism that maintains variation within and across populations. However, there are few examples of balancing selection operating on loci underpinning complex traits, which frequently display high levels of variation. We investigated mechanisms that may maintain variation in a focal polymorphism-leaf chemical profiles of a perennial wildflower (Boechera stricta, Brassicaceae)-explicitly interrogating multiple ecological and genetic processes including spatial variation in selection, antagonistic pleiotropy and frequency-dependent selection. A suite of common garden and greenhouse experiments showed that the alleles underlying variation in chemical profile have contrasting fitness effects across environments, implicating two ecological drivers of selection on chemical profile: herbivory and drought. Phenotype-environment associations and molecular genetic analyses revealed additional evidence of past selection by these drivers. Together, these data are consistent with balancing selection on chemical profile, probably caused by pleiotropic effects of secondary chemical biosynthesis genes on herbivore defence and drought response.


Subject(s)
Brassicaceae , Selection, Genetic , Brassicaceae/genetics , Herbivory , Plant Leaves , Polymorphism, Genetic
3.
Front Plant Sci ; 11: 257, 2020.
Article in English | MEDLINE | ID: mdl-32211010

ABSTRACT

Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...